Search results: Found 8

Listing 1 - 8 of 8
Sort by
Ein Prognosemodell für die Verwitterung von Sandstein

Author:
Book Series: Karlsruher Reihe Massivbau, Baustofftechnologie, Materialprüfung / Institut für Massivbau und Baustofftechnologie ; Materialprüfungs- und Forschungsanstalt Karlsruhe ISSN: 1869912X ISBN: 9783731505204 Year: Volume: 79 Pages: Getr. Zählung DOI: 10.5445/KSP/1000054324 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

Sandstone is the most common kind of natural stone used for historic buildings in Central Europe. During the past century a dramatic increase in different types of damage to historic buildings, monuments and sculptures made from natural stone has been observed. The present work deals with theoretical aspects of strength loss, fracture processes and degradation during the decay processes.

Kulturen des Reparierens

Authors: --- ---
Book Series: Edition Kulturwissenschaft ISBN: 9783839438602 9783839438602 9783837638608 Year: Pages: 410 DOI: 10.14361/9783839438602 Language: German
Publisher: transcript Verlag
Subject: Social Sciences
Added to DOAB on : 2019-01-15 13:34:28
License:

Loading...
Export citation

Choose an application

Abstract

In the 'life' of technical objects and infrastructures repair and maintenance are central practices, both economically and culturally. This book foregrounds these activities, rarely examined until now, and looks into the forms of knowledge of different cultures of repair. In the process, the expertise and political ambitions of human actors receive as much consideration as the internal dynamics of the objects themselves. The articles focus on practices such as watch or computer repair, as well as on spaces such as the home, the hospital, the Repair Cafe, and the city of the 'Global South'. In addition, the book also investigates the extent to which repair and repair-friendly design can contribute to more sustainability.

Flexible Electronics: Fabrication and Ubiquitous Integration

Author:
ISBN: 9783038978282 / 9783038978299 Year: Pages: 160 DOI: 10.3390/books978-3-03897-829-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.

Novel Photoactive Materials

Author:
ISBN: 9783038976509 Year: Pages: 166 DOI: 10.3390/books978-3-03897-651-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-03-05 14:29:32
License:

Loading...
Export citation

Choose an application

Abstract

Photoactivity represents the ability of a material, generally speaking a semiconductor, to become active when interacting with light. It can be declined in many ways, and several functionalities arising from this behavior of materials can be exploited, all leading to positive repercussions on our environment. There are several classes of effects of photoactivity, all of which have been deeply investigated in the last few decades, allowing to develop more and more efficient materials and devices. All of them share a common point, that is, the interaction of a material with light, although many different materials are taken into account depending on the effect desired—from elemental semiconductors like silicon, to more complex compounds like CdTe or GaAs, to metal oxides like TiO2 and ZnO. Given the broadness of the field, a huge number of works fall within this topic, and new areas of discovery are constantly explored. The special issue “Novel Photoactive Materials” has been proposed as a means to present recent developments in the field, and for this reason the articles included touch different aspects of photoactivity, from photocatalysis to photovoltaics to light emitting materials.

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210121 / 9783039210138 Year: Pages: 280 DOI: 10.3390/books978-3-03921-013-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210145 / 9783039210152 Year: Pages: 256 DOI: 10.3390/books978-3-03921-015-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210169 / 9783039210176 Year: Pages: 270 DOI: 10.3390/books978-3-03921-017-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Listing 1 - 8 of 8
Sort by
Narrow your search