Search results: Found 5

Listing 1 - 5 of 5
Sort by
Fertilizer Application on Crop Yield

Author:
ISBN: 9783038976547 Year: Pages: 252 DOI: 10.3390/books978-3-03897-655-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Fertilizer Application on Crop Yield that was published in Agronomy

Keywords

soil organic matter --- soil biota --- soil acidity --- soil erosion --- fertilizer management --- site-specific nutrient management --- balanced use of fertilizers --- integrated nutrient management --- agronomic response --- calcium --- Copper --- NPK amendments --- Value Cost Ratio --- Zinc --- nitrogen use efficiency (NUE) --- nitrate assimilation --- nitrate reductase activity --- maize --- nitrate --- ammonia --- NADH --- NADH-dehydrogenase --- Complex I --- site-specific K management --- soil K supply --- maize yield response to K --- maize crop manager --- nutrient expert for maize --- durum wheat --- mineral N --- organic N --- S fertilization --- grain quality --- grain yield --- phosphorous --- potassium --- corn–soybean rotation --- management --- production system --- organic farming --- conventional farming --- organic nutrients --- chemical fertilizers --- global food demand --- agroforestry system --- evergreen agriculture --- biofertilizer --- Bacillus pumilus --- growth promotion --- N fertilizer --- rice --- yield --- green manure --- nitrogen uptake --- Orychophragmus violaceus L. --- soil nitrogen pools --- grain yield --- Zea mays L. --- hybrid rice --- K use efficiency --- potassium --- saline tract --- soil N supply --- soil N mineralization --- N fertilization --- potentially mineralizable N --- humid Mediterranean climate --- conservation agriculture --- NUE --- nitrogen recovery efficiency --- nitrogen physiological recovery --- wheat yields --- Agrotain® urea --- rice-wheat system --- organic farming --- forage legume --- long-term productivity --- soil health --- economics --- integrated nutrient management --- rice --- wheat --- yield --- net returns --- soil health --- sustainability

Molecular Advances in Wheat and Barley

Author:
ISBN: 9783039213719 9783039213726 Year: Pages: 290 DOI: 10.3390/books978-3-03921-372-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Allohexaploid bread wheat and diploid barley are two of the most cultivated crops in the world. This book reports novel research and reviews concerning the use of modern technologies to understand the molecular bases for wheat and barley improvement. The contributions published in this book illustrate research advances in wheat and barley knowledge using modern molecular techniques. These molecular approaches cover genomic, transcriptomic, proteomic, and phenomic levels, together with new tools for gene identification and the development of novel molecular markers. Overall, the contributions for this book lead to a further understanding of regulatory systems in order to improve wheat and barley performance.

Keywords

Triticum durum --- Aegilops tauschii --- Triticum aestivum --- marker-trait associations --- genes --- bread wheat --- genetic biofortification --- favorable alleles --- allohexaploid --- homoeolog --- hybrid necrosis --- molecular marker --- wheat --- wheat --- rye --- 6R --- small segment translocation --- powdery mildew --- transgenic wheat --- 12-oxophytodienoate reductase --- jasmonates --- freezing tolerance --- HIGS --- transgene --- wheat --- barley --- cereal cyst nematodes --- wheat --- barely --- breeding --- biotechnology --- resistance --- Triticum aestivum --- Landrace --- Powdery mildew --- Bulked segregant analysis-RNA-Seq (BSR-Seq) --- Single nucleotide polymorphism (SNP) --- Kompetitive Allele Specific PCR (KASP) --- Blumeria graminis f. sp. tritici --- protein two-dimensional electrophoresis --- mass spectrometry --- Pm40 --- Barley --- Grain development --- Transcriptional dynamics --- RNA editing --- RNA-seq --- durum wheat --- Tunisian landraces --- center of diversity --- genetic diversity --- population structure --- DArTseq technology --- chromatin --- 3D-FISH --- nucleus --- introgression --- rye --- hybrid --- wheat --- genome stability --- wheat --- Thinopyrum --- chromosome --- ND-FISH --- oligo probe --- barley --- wheat --- protease --- germination --- grain --- abiotic stress --- antioxidant enzymes --- aquaporin --- TdPIP2 --- 1 --- histochemical analysis --- transgenic wheat --- transpiration --- wheat --- Aegilops tauschii --- Lr42 --- disease resistance --- molecular mapping --- KASP markers --- marker-assisted selection --- phytase --- wheat --- barley --- purple acid phosphatase phytase --- PAPhy --- mature grain phytase activity (MGPA) --- genome assembly --- bread wheat --- barley --- optical mapping --- BAC --- ribosomal DNA --- cereals --- CRISPR --- crops --- genetic engineering --- genome editing --- plant --- Triticeae --- n/a

Remote Sensing Applications for Agriculture and Crop Modelling

Author:
ISBN: 9783039282265 9783039282272 Year: Pages: 308 DOI: 10.3390/books978-3-03928-227-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling,

Keywords

crop residue management --- remote sensing --- satellite images --- hyperspectral sensor --- vegetation index --- yield monitoring --- remote sensing --- proximal sensing --- crop modeling --- soil --- plant --- management zone --- spatial variability --- temporal variability --- precision agriculture --- Á Trous algorithm --- conservation agriculture --- crop inventory --- remote sensing --- spectral-weight variations in fused images --- soil stoichiometry --- land use change --- soil organic carbon --- nitrogen --- Tarim Basin --- SPAD --- leaf nitrogen concentration --- nitrogen nutrition index --- grain yield --- dynamic model --- wheat --- disease --- yield --- septoria tritici blotch --- leaf area index --- crop modelling --- decision support system for agrotechnology transfer (DSSAT) --- Cropsim-CERES Wheat --- sorghum biomass --- prediction modeling --- machine learning --- fAPAR --- Sentinel-2 satellite imagery --- big data technology --- remote sensing --- UAV --- vegetation indices --- relative frequencies --- yield --- precision agriculture --- cultivars --- crop growth model --- data assimilation --- Leaf Area Index --- Sentinel-2 --- EPIC model --- yield estimation --- NDVI --- remote sensing --- GIS --- precision farming --- variable rate technology --- yield mapping --- protein content --- wheat --- canopy temperature depression --- NDVI --- RGB images --- grain yield --- ?13C --- UAV chemical application --- droplet drift --- flat-fan atomizer --- simulation analysis --- control variables --- agricultural land-cover --- multi-spectral --- generalized model --- machine learning --- crop type mapping --- Integrated Administration and Control System --- remote sensing --- hydroponic --- vegetable monitoring --- crop production --- spectral simulation --- hyperspectral data --- n/a --- fractional cover --- irrigation --- satellite --- crop simulation model --- AquaCrop --- yield mapping --- remote sensing --- durum wheat --- precision agriculture --- large cardamom --- remote sensing --- species modelling --- habitat assessment --- climate change

Sustainable Cropping Systems

Author:
ISBN: 9783039289073 / 9783039289080 Year: Pages: 326 DOI: 10.3390/books978-3-03928-908-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Global crop production must substantially increase to meet the needs of a rapidly growing population. This is constrained by the availability of nutrients, water, and land. There is also an urgent need to reduce the negative environmental impacts of crop production. Collectively, these issues represent one of the greatest challenges of the twenty-first century. Sustainable cropping systems based on ecological principles are the core of integrated approaches to solve this critical challenge. This special issue provides an international basis for revealing the underlying mechanisms of sustainable cropping systems to drive agronomic innovations. It includes review and original research articles that report novel scientific findings on improvement in cropping systems related to crop yields and their resistance to biotic and abiotic stressors, resource use efficiency, environmental impact, sustainability, and ecosystem services.

Keywords

organic cropping system --- maize --- soybean --- wheat --- partial returns --- Zea mais L. --- Triticum aestivum L. --- Helianthus annuus L. --- organic fertilization --- mineral N fertilization --- protein crops --- systematic review --- Europe --- multiple correspondence analysis (MCA) --- potato (Solanum tuberosum) --- shade --- light --- yield --- growth --- quality --- cover crops --- agrobiodiversity --- conventionalization --- system approach --- harvesting strategies --- forage yield and quality --- forage sorghum --- pearl millet --- Texas High Plains --- kura clover --- living mulch --- cover crop --- perennial --- conservation --- nitrogen --- forage --- economics --- farmer’s perception --- maize --- push-pull technology --- stemborer --- no-tillage --- conservation agriculture --- durum wheat --- gluten fractions --- SDS-PAGE analysis --- leguminous cover crop --- vetch --- double cropping --- grain yield --- N uptake --- N use efficiency --- rice --- hierarchical patch dynamics --- cropping system design --- up-scaling --- vineyard system --- complexity --- organization --- cropping systems --- water --- nitrogen --- WHCNS --- scenario analyses --- maize production --- nitrogen use efficiency --- nitrogen nutrition --- Acidic soil --- crop rotation --- enzyme activities --- green manure --- sustainable yield index --- nutrient balance --- crop residue incorporation --- straw decomposition --- residue C and N release --- SOC and STN stocks --- cover crop --- manure --- nitrate --- nitrogen --- cereal rye --- maize --- no-tillage --- cover crop --- irrigation --- weed suppression --- gross margin --- faba bean --- forage pea --- fall grazing --- cover crop --- catch crop --- nutrient cycling --- cropping systems --- sustainable crop production --- agroecology --- nutrient use efficiency --- water use efficiency --- environmental quality

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (4)

eng (1)


Year
From To Submit

2020 (2)

2019 (3)