Search results: Found 6

Listing 1 - 6 of 6
Sort by
Electrochemically Active Microorganisms

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456512 Year: Pages: 218 DOI: 10.3389/978-2-88945-651-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Microbial electrochemical systems (MESs, also known as bioelectrochemical systems (BESs) are promising technologies for energy and products recovery coupled with wastewater treatment, and have attracted increasing attention. Many studies have been conducted to expand the application of MESs for contaminants degradation and bioremediation, and increase the efficiency of electricity production by optimizing architectural structure of MESs, developing new electrode materials, etc. However, one of the big challenges for researchers to overcome, before MESs can be used commercially, is to improve the performance of the biofilm on electrodes so that ‘electron transfer’ can be enhanced. This would lead to greater production of electricity, energy or other products. Electrochemically active microorganisms (EAMs) are a group of microorganisms which are able to release electrons from inside their cells to an electrode or accept electrons from an electron donor. The way in which EAMs do this is called ‘extracellular electron transfer’ (EET). So far, two EET mechanisms have been identified: direct electron transfer from microorganisms physically attached to an electrode, and indirect electron transfer from microorganisms that are not physically attached to an electrode. 1) Direct electron transfer between microorganisms and electrode can occur in two ways: a) when there is physical contact between outer membrane structures of the microbial cell and the surface of the electrode, b) when electrons are transferred between the microorganism and the electrode through tiny projections (called pili or nanowires) that extend from the outer membrane of the microorganism and attach themselves to the electrode. 2) Indirect transfer of electrons from the microorganisms to an electrode occurs via long-range electron shuttle compounds that may be naturally present (in wastewater, for example), or may be produced by the microorganisms themselves. The electrochemically active biofilm, which degrades contaminants and produces electricity in MESs, consists of diverse community of EAMs and other microorganisms. However, up to date only a few EAMs have been identified, and most studies on EET have focused on the two model species of Shewanella oneidensis and Geobacter sulfurreducens.

Plant Mitochondria

Author:
ISBN: 9783038975502 / 9783038975519 Year: Pages: 400 DOI: 10.3390/books978-3-03897-551-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Plant Sciences
Added to DOAB on : 2019-02-19 09:53:15
License:

Loading...
Export citation

Choose an application

Abstract

The primary function of mitochondria is respiration, where the catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation. In plants, mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves. Plant mitochondria also play important roles in a variety of cellular processes associated with carbon, nitrogen, phosphorus, and sulfur metabolism. Research on plant mitochondria has rapidly developed in the last few decades with the availability of the genome sequences for a wide range of model and crop plants. Recent prominent themes in plant mitochondrial research include linking mitochondrial composition to environmental stress responses, and how this oxidative stress impacts on the plant mitochondrial function. Similarly, interest in the signaling capacity of mitochondria, the role of reactive oxygen species, and retrograde and anterograde signaling has revealed the transcriptional changes of stress responsive genes as a framework to define specific signals emanating to and from the mitochondrion. There has also been considerable interest in the unique RNA metabolic processes in plant mitochondria, including RNA transcription, RNA editing, the splicing of group I and group II introns, and RNA degradation and translation. Despite their identification more than 100 years ago, plant mitochondria remain a significant area of research in the plant sciences. This Special Issue, “Plant Mitochondria”, will cover a selection of recent research topics and timely review articles in the field of plant mitochondrial research.

Current Challenges and Future Perspectives on Emerging Bioelectrochemical Technologies

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199044 Year: Pages: 121 DOI: 10.3389/978-2-88919-904-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The increasing demand for energy worldwide, currently evaluated at 13 terawatts per year, has triggered a surge in research on alternative energy sources more sustainable and environmentally friendly. Bio-catalyzed electrochemical systems (BESs) are a rapidly growing biotechnology for sustainable production of bioenergy and/or value-added bioproducts using microorganisms as catalysts for bioelectrochemical reactions at the electrode surface. In the last decades, this biotechnology has been intensively studied and developed as a flexible and practical platform for multiple applications such as electricity production, wastewater treatment, pollutants remediation, desalination and production of biogas, biofuels, or other commodities. BESs could have a critical impact on societies in many spheres of activity and become one of the solutions to reform our petroleum-based economy. However, BESs research has so far been limited to lab scale with the notable exceptions of pilot scale microbial fuel cells for brewery and winery wastewater treatment coupled with electricity generation. In general, more knowledge has to be acquired to overcome the issues that are stymieing BESs development and commercialization. For example, it is critical to understand better microbial physiology including the mechanisms responsible for the transfer of electrons between the microbes and the electrodes to start optimizing the systems in a more rational manner. There are many BES processes and for each one of them there is a multitude of biological and electrochemical specifications to investigate and adjust such as the nature of the microbial platform, electrode materials, the reactor design, the substrate, the medium composition, and the operating conditions. The ultimate goal is to develop highly energy efficient BESs with a positive footprint on the environment while maintaining low cost and generating opportunities to create value. BESs are complex systems developed with elements found in multiple fields of science such as microbiology, molecular biology, bioinformatics, biochemistry, electrochemistry, material science and environmental engineering. Given the high volume of research activities going on in the field of BESs today, this e-book explores the current challenges, the more recent progresses, and the future perspectives of BESs technologies. The BESs discussed here include microbial fuel cells, microbial electrolysis cells, microbial electrosynthesis cells, microbial electroremediation cells, etc.

Protein Crystallization under the Presence of an Electric Field

Author:
ISBN: 9783038975199 / 9783038975205 Year: Pages: 90 DOI: 10.3390/books978-3-03897-520-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book entitled “Protein Crystallization under the Presence of an Electric Field” covers recent trends and original contributions on the use of electric fields (internal and external) for applications for nucleation control and the effect on the kinetics of crystallization processes. This book also includes basic strategies for growing crystals of biological macromolecules for characterization via X-ray and neutron diffraction as well as using modern X-ray-free electron-lasers. There are six main topics covered on this book, including recent insights into the crystallization process from nucleation and growth peculiarities, when using different kinds of electric fields; the effect of external electric fields on the kinetics of the dislocation-free growth of model proteins; the use of very strong external electric fields for the crystallization of a model protein glucose isomerase; and the use of alternant electric fields using different kinds of pulses and their combination with strong magnetic fields. There are also contributions related to applications in developing electron-transfer devices as well as graphene-based platforms for electrocrystallization and in situ X-ray diffraction characterization.

Thin Films for Energy Harvesting, Conversion, and Storage

Authors: --- ---
ISBN: 9783039217243 / 9783039217250 Year: Pages: 174 DOI: 10.3390/books978-3-03921-725-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Listing 1 - 6 of 6
Sort by
Narrow your search
-->