Search results: Found 2

Listing 1 - 2 of 2
Sort by
Viticulture and Winemaking under Climate Change

Author:
ISBN: 9783039219742 9783039219759 Year: Pages: 294 DOI: 10.3390/books978-3-03921-975-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Meteorology and Climatology
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The importance of viticulture and the winemaking socio-economic sector is acknowledged worldwide. The most renowned winemaking regions show very specific environmental characteristics, where climate usually plays a central role. Considering the strong influence of weather and climatic factors on grapevine yields and berry quality attributes, climate change may indeed significantly impact this crop. Recent trends already point to a pronounced increase in growing season mean temperatures, as well as changes in precipitation regimes, which have been influencing wine typicity across some of the most renowned winemaking regions worldwide. Moreover, several climate scenarios give evidence of enhanced stress conditions for grapevine growth until the end of the century. Although grapevines have high resilience, the clear evidence for significant climate change in the upcoming decades urges adaptation and mitigation measures to be taken by sector stakeholders. To provide hints on the abovementioned issues, we have edited a Special Issue entitled “Viticulture and Winemaking under Climate Change”. Contributions from different fields were considered, including crop and climate modeling, and potential adaptation measures against these threats. The current Special Issue allows for the expansion of scientific knowledge in these particular fields of research, as well as providing a path for future research.

Keywords

viticulture --- crop model --- phenology --- physiological processes --- climate --- micrometeorology --- microclimate --- climate change --- water limitation --- dry mass partitioning --- assimilation --- intercellular CO2 --- stomatal conductance --- leaf water potential --- Vitis vinifera L. --- production system --- S-ABA --- rate of anthocyanin accumulation --- CIRG --- bioactive compounds --- Botrytis cinerea --- low-input --- mechanical thinning --- viticultural training system --- yield formation --- leaf area --- table grapes --- photosynthesis --- berry composition --- phenolics --- natural hail --- grapevine --- phenology --- phenology modelling platform --- Touriga Franca --- Touriga Nacional --- climate change --- RCP4.5 --- EURO-CORDEX --- Douro wine region --- Portugal --- global warming --- technological and phenolic ripeness --- grape --- wine --- sensory analysis --- climate change --- elevated CO2 --- grapevine pest --- mealybug --- parasitoid --- FACE --- predawn water potential --- PRI --- remote sensing --- vineyards --- water status --- WI --- climate change --- Vitis vinifera L. --- general circulation model --- EURO-CORDEX --- phenological model --- grapevine --- Virtual Riesling --- climate change --- temperature --- plant architecture --- crop management --- modelling --- climate change --- viticulture --- adaptation --- temperature --- drought --- plant material --- rootstock --- training system --- phenology --- modeling --- Vitis vinifera --- autochthonous cultivar --- ’Uva Rey’ --- unmanned aerial vehicles --- vigour maps --- spatial variability --- normalized difference vegetation index --- crop water stress index --- crop surface model --- precision viticulture --- climate change --- multi-temporal analysis --- Vitis vinifera (L.) --- SO2 pads --- B. cinerea mold --- grape quality --- light micro-climates --- mitigation strategies --- kaolin --- irrigation --- Vitis vinifera L. --- grape berry tissues --- pulse amplitude modulated (PAM) fluorometry --- photosynthesis --- photosynthetic pigments --- viticulture --- winemaking --- climatic influence --- climate change --- adaptation measures

Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)