Search results: Found 8

Listing 1 - 8 of 8
Sort by
The Informatics of Time and Events

Author:
ISBN: 9782722604292 Year: Language: English
Publisher: Collège de France
Added to DOAB on : 2016-11-14 17:16:04
License: OpenEdition licence for Books

Loading...
Export citation

Choose an application

Abstract

The management of time and events is central to various domains of informatics, from embedded circuits and software programs in all sorts of objects to musical creation, or the simulation of physical phenomena. Yet this subject receives little attention in classical informatics. This lecture presents different types of time and event modelling associated with new programming languages. It discusses the notions of density of the moment and of hierarchical and multiform times created by the rep...

Real-Time Embedded Systems

Authors: ---
ISBN: 9783038975090 / 9783038975106 Year: Pages: 188 DOI: 10.3390/books978-3-03897-510-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2019-01-10 12:20:27
License:

Loading...
Export citation

Choose an application

Abstract

Real-time and networked embedded systems are important bidirectional bridges between the physical and the information worlds. Embedded intelligence is increasingly pervading industry, infrastructure, and public and private spaces, being identified as an emerging societal and economic “neural system” that supports both societal changes and economic growth. As cost/performance improves, objects connected in everyday life increasingly rely on embedded intelligence in an ever-growing array of application fields, specialized technologies, and engineering disciplines.While this process gradually builds the IoT, it exposes a series of specific non-trivial timing and other extra-functional requirements and system properties that are less common in other computing areas. The ten articles in this book propose solutions to the specific open problems of cyber–physical and real-time embedded systems applicable to both traditional application domains, such as industrial automation and control, energy management, automotive, aerospace and defense systems, as well as emerging domains, such as medical devices, household appliances, mobile multimedia, gaming, and entertainment systems.]

QoS in Wireless Sensor/Actuator Networks and Systems

Author:
ISBN: 9783038973621 9783038973638 Year: Pages: 200 DOI: 10.3390/books978-3-03897-363-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science --- Electrical and Nuclear Engineering
Added to DOAB on : 2018-11-26 10:59:38
License:

Loading...
Export citation

Choose an application

Abstract

Wireless sensor/actuators networks (WSANs) are being increasingly used in a panoply of applications, such as industrial automation, process control, ambient assisted living, structural health monitoring, and homeland security. Most of these applications require specific quality-of-service (QoS) guarantees from their underlying communication infrastructures (regardless of their wireless, wired, or hybrid nature).This book gathers together an extremely rich set of contributions, addressing several WSAN domains and sharing QoS as a common denominator. Eight papers have made it through a rigorous and iterative peer review process (three reviews per paper, at least two review rounds), involving 38 authors from all over the world (North and South America, Europe, Asia, and Australia) from academia, industry, and the military. Each paper features at least one reference author which is highly reputed in this scientific domain, totaling over 100,000 citations altogether.

Computational Intelligence in Photovoltaic Systems

Authors: ---
ISBN: 9783039210985 / 9783039210992 Year: Pages: 180 DOI: 10.3390/books978-3-03921-099-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Photovoltaics, among the different renewable energy sources (RES), has become more popular. In recent years, however, many research topics have arisen as a result of the problems that are constantly faced in smart-grid and microgrid operations, such as forecasting of the output of power plant production, storage sizing, modeling, and control optimization of photovoltaic systems. Computational intelligence algorithms (evolutionary optimization, neural networks, fuzzy logic, etc.) have become more and more popular as alternative approaches to conventional techniques for solving problems such as modeling, identification, optimization, availability prediction, forecasting, sizing, and control of stand-alone, grid-connected, and hybrid photovoltaic systems. This Special Issue will investigate the most recent developments and research on solar power systems. This Special Issue “Computational Intelligence in Photovoltaic Systems” is highly recommended for readers with an interest in the various aspects of solar power systems, and includes 10 original research papers covering relevant progress in the following (non-exhaustive) fields: Forecasting techniques (deterministic, stochastic, etc.); DC/AC converter control and maximum power point tracking techniques; Sizing and optimization of photovoltaic system components; Photovoltaics modeling and parameter estimation; Maintenance and reliability modeling; Decision processes for grid operators.

Open-Source Electronics Platforms

Author:
ISBN: 9783038979722 / 9783038979739 Year: Pages: 262 DOI: 10.3390/books978-3-03897-973-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.

Keywords

human-computer interface (HCI) --- electrooculogram (EOG) --- electromyogram (EMG) --- modified sliding window algorithm --- piecewise linear approximation (PLA) --- support vector regression --- eye tracking --- blockchain --- ontology --- context --- cyber-physical systems --- robotics --- interaction --- coalition --- individual management of livestock --- momentum data sensing --- remote sensing platform --- sensor networks --- technology convergence --- industry 4.0 --- distributed measurement systems --- automation networks --- node-RED --- cloud computing --- OPC UA --- hardware trojan taxonomy --- thermal imaging --- side channel analysis --- infrared --- FPGA --- Internet of Things --- wireless sensor networks --- Cloud of Things --- virtual sensor --- sensor detection --- smart cities --- Internet of Things --- Raspberry Pi --- BeagleBoard --- Arduino --- Internet of Things --- open hardware --- smart farming --- teaching robotics --- science teaching --- STEM --- robotic tool --- Python --- Raspberry Pi --- PiCamera --- vision system --- service learning --- robotics --- open platform --- automated vehicle --- EPICS --- open-source platform --- visual algorithms --- digital signal controllers --- embedded systems education --- dsPIC --- Java --- smart converter --- maximum power point tracking (MPPT) --- photovoltaic (PV) system --- Field Programmable Gate Array (FPGA) --- Digital Signal Processor (DSP) --- interleaved --- DC/DC converter --- distributed energy resource --- n/a

Image Processing Using FPGAs

Author:
ISBN: 9783038979180 / 9783038979197 Year: Pages: 204 DOI: 10.3390/books978-3-03897-919-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs.

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 / 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 / 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 8 of 8
Sort by