Search results: Found 31

Listing 1 - 10 of 31 << page
of 4
>>
Sort by
Papers of the Conference on Genetics of Aging and Longevity 2012

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193530 Year: Pages: 140 DOI: 10.3389/978-2-88919-353-0 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

The 2nd International Conference "Genetics of aging and longevity" took place 22-25 April, 2012 in the main building of Russian Academy of Sciences, Moscow, Russia. Top gerontologists and geneticists from 25 countries around the world discussed the current problems in many areas related to the genetics of longevity and mechanisms of aging. This Research Topic is aimed to provide a collection of articles based on the talks, reports and experimental outcomes related to the topics of the conference: "Epigenetic Changes Associated with Longevity", "Hormones and Aging", "Proximal and Cellular Mechanisms of Aging", "Nutrient Signaling, Stress Resistance and Longevity", "Identifying Longevity Genes by Mutational, QTL and Association Mapping", "Fundamental Biological Processes Central to Aging", "Interventions to Extend Lifespan and Promote Healthy Aging", "Longevity: Meta-Analysis and Informatics Approaches". Participants of the Conference submitted 20 papers belonging to Original Research Papers, Review Articles (Including Mini Reviews), Opinion and Perspective Papers. All of the submitted manuscripts were peer-reviewed by excellent Frontiers Review Editors and prepared for publication by highly efficient Frontiers team, and it is a pleasure to thank them all for their work and dedication.

The Transcriptional Regulation of Memory

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198658 Year: Pages: 116 DOI: 10.3389/978-2-88919-865-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The formation of various forms of memory involves a series of distinct cellular and molecular mechanisms, many of which are not fully understood. There are highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. The formation of short-term (across minutes) memory is mediated by local changes in synapses, while long-term (across hours to days) memory storage is associated with activation of transcription and synthesis of proteins that modify synaptic function. Transcription factors, which can either repress or activate transcription, play a vital role in driving protein synthesis underlying synaptic plasticity and memory, whereby protein synthesis provides the necessary building blocks to accommodate structural changes at the synapse that foster memory formation. Recent data implicate several families of transcription factors that appear critically important in the regulation of memory.In this Topic we will focus on the families of transcription factors thus far found to be critically involved in synaptic plasticity and memory formation. These include cAMP response element binding protein (CREB), Rel/nuclear factor B (Rel/NFB), CCAAT enhancer binding protein (C/EBP), and early growth response factor (Egr). In recent years, numerous studies have implicated epigenetic mechanisms, changes in gene activity and expression that occur without alteration in gene sequence, in the memory consolidation process. DNA methylation and chromatin remodeling are critically involved in learning and memory, supporting a role of epigenetic mechanisms. Here we provide more evidence of the importance of DNA methylation, histone posttranslational modifications and the role of histone acetylation and HDAC inhibitors in above mentioned processes.

Alterations of Epigenetics and MicroRNAs in Cancer and Cancer Stem Cell

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193455 Year: Pages: 79 DOI: 10.3389/978-2-88919-345-5 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Genetics --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Studies have shown that alterations of epigenetics and microRNAs (miRNAs) play critical roles in the initiation and progression of human cancer. Epigenetic silencing of tumor suppressor genes in cancer cells is generally mediated by DNA hypermethylation of CpG island promoter and histone modification such as methylation of histone H3 lysine 9 (H3K9) and tri-methylation of H3K27. MiRNAs are small non-coding RNAs that regulate expression of various target genes. Specific miRNAs are aberrantly expressed and play roles as tumor suppressors or oncogenes during carcinogenesis. Important tumor suppressor miRNAs are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies. Stem cells have the ability to perpetuate themselves through self-renewal and to generate mature cells of various tissues through differentiation. Accumulating evidence suggests that a subpopulation of cancer cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation, which is defined as cancer stem cells. Cancer stem cells are considered to be resistant to conventional chemotherapy and radiation therapy, suggesting that these cells are important targets of cancer therapy. DNA methylation, histone modification and miRNAs may be deeply involved in stem-like properties in cancer cells. Restoring the expression of tumor suppressor genes and miRNAs by chromatin modifying drugs may be a promising therapeutic approach for cancer stem cells. In this Research Topic, we discuss about alterations of epigenetics and miRNAs in cancer and cancer stem cell and understand the molecular mechanism underlying the formation of cancer stem cell, which may provide a novel insight for treatment of refractory cancer.

Refining Prevention: Genetic and Epigenetic Contributions

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198085 Year: Pages: 94 DOI: 10.3389/978-2-88919-808-5 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Currently, most prevention efforts are framed as universal interventions. However, despite the demonstrated efficacy of many prevention programs, variability in response is the rule with some participants responding very little and others accounting for the bulk of the positive impact of the program. Better understanding the processes associated with better and worse response to prevention is a critical first step in refining and adapting existing programs, or alternatively designing new prevention programs with enhanced outcomes. Because vulnerabilities to substance use, emotional problems, risky sexual behavior and other behavioral problems are influenced by a combination of environmental, genetic, and epigenetic factors, mediated in part through psychological processes (Kreek et al., 2005; Rutter et al., 2006), the study of genetic and epigenetic vulnerability and susceptibility factors provides an important starting point for efforts to address this critical need. A growing body of research on differential genetic susceptibility indicates that efforts to enhance prevention impact may benefit from consideration of the contribution of individualgenetic differences to treatment response (Brody et al., 2013). In addition, the recent expansion of genetic research to include a focus on epigenetic change provides considerable promise for the development of indicated prevention and individually tailored prevention efforts. However, before this promise can be realized, a number of theoretical and practical challenges remain. Thus, through this special section, we provide a foundation for a new era of prevention research in which the principles of prevention science are combined with genomic science. In the current special section we bring together authors to deal with genetic and epigenetically driven processes relevant to depression, substance abuse, and sexual risk taking. Together they comment on, and provide data relevant to, assessment, research and statistical methods, The papers help to inform the development of a new generation of prevention programs that go beyond universal programs and sensitively target key processes while providing greater precision regarding prediction of population-level impact.

Cell Fate

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198528 Year: Pages: 102 DOI: 10.3389/978-2-88919-852-8 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The fundamental question of how an undifferentiated progenitor cell adopts a more specialized cell fate that then contributes to the development of specialized tissues, organs, organ systems and ultimately a unique individual of a given species has intrigued cell and developmental biologists for many years. Advances in molecular and cell biology have enabled investigators to identify genetic and epigenetic factors that contribute to these processes with increasing detail and also to define the various molecular characteristics of each cell fate with greater precision. Understanding these processes have also provided greater insights into disorders in which the normal mechanisms of cell fate determination are altered, such as in cancer and inherited malformations. With these advances have come techniques that facilitate the manipulation of cell fate, which have the potential to revolutionize the field of medicine by facilitating the repair and/or regeneration of diseased organs. Given the rapid advances that are occurring in the field, the articles in this eBook are both relevant and timely. These articles originally appeared online as part of the Research Topic “Cell Fate” overseen by my colleagues Dr. Lin, Dr. Buttitta, Dr. Maves, Dr. Dilworth, Dr. Paladini and myself and have been viewed extensively. Because of their popularity, they are now made available as an eBook, in a more easily downloadable form.Michael T. Chin

Recent Advances of Epigenetics in Crop Biotechnology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198542 Year: Pages: 189 DOI: 10.3389/978-2-88919-854-2 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Epigenetics is a new field that explains gene expression at the chromatin structure and organization level. Three principal epigenetic mechanisms are known and hundreds of combinations among them can develop different phenotypic characteristics. DNA methylation, histone modifications and small RNAs have been identified, and their functions are being studied in order to understand the mechanisms of interaction and regulation among the different biological processes in plants. Although, fundamental epigenetic mechanisms in crop plants are beginning to be elucidated, the comprehension of the different epigenetic mechanisms, by which plant gene regulation and phenotype are modified, is a major topic to develop in the near future in order to increase crop productivity. Thus, the importance of epigenetics in improving crop productivity is undoubtedly growing. Current research on epigenetics suggest that DNA methylation, histone modifications and small RNAs are involved in almost every aspect of plant life including agronomically important traits such as flowering time, fruit development, responses to environmental factors, defense response and plant growth. The aim of this Research Topic is to explore the recent advances concerning the role of epigenetics in crop biotechnology, as well as to enhance and promote interactions among high quality researchers from different disciplines such as genetics, cell biology, pathology, microbiology, and evolutionary biology in order to join forces and decipher the epigenetic mechanisms in crop productivity.

Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging and Disease

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198665 Year: Pages: 220 DOI: 10.3389/978-2-88919-866-5 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Adult stem cells are responsible for tissue regeneration and repair throughout life. Their quiescence or activation are tightly regulated by common signalling pathways that often recapitulate those happening during embryonic development, and thus it is important to understand their regulation not only in postnatal life, but also during foetal development. In this regard, skeletal muscle is an interesting tissue since it accounts for a large percentage of body mass (about 40%), it is highly amenable to intervention through exercise and it is also key in metabolic and physiological changes underlying frailty susceptibility in the elderly. While muscle-resident satellite cells are responsible for all myogenic activity in physiological conditions and become senescent in old age, other progenitor cells such as mesoangioblasts do seem to contribute to muscle regeneration and repair after tissue damage. Similarly, fibro-adipogenic precursor cells seem to be key in the aberrant response that fills up the space left from atrophied muscle mass and which ends up with a dysfunctional muscle having vast areas of fatty infiltration and fibrosis. The complex interplay between these stem/progenitor cell types and their niches in normal and pathological conditions throughout life are the subjects of intense investigation. This eBook highlights recent developments on the role of stem cells in skeletal muscle function, both in prenatal and postnatal life, and their regulation by transcriptional, post-transcriptional and epigenetic mechanisms. Additionally, it includes articles on interventions associated with exercise, pathological changes in neuromuscular diseases, and stem cell aging.

Epigenetics as a Deep Intimate Dialogue between Host and Symbionts

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198757 Year: Pages: 98 DOI: 10.3389/978-2-88919-875-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Symbiosis is an intimate relationship between different living entities and is widespread in virtually all organisms. It was critical for the origin and diversification of Eukaryotes and represents a major driving force in evolution. Indeed, symbiosis may support a wide range of biological processes, including those underlying the physiology, development, reproduction, health, behavior, ecology and evolution of the organisms involved in the relationship. Although often confused with mutualism, when both organisms benefit from the association, symbiosis actually encompasses several and variable relationships. Among them is parasitism, when one organism benefits but the other is harmed, and commensalism, when one organism benefits and the other remains unaffected. Even if many symbiotic lifestyles do exist in nature, in many cases the intimacy between the partners is so deep that the “symbiont” (sensu strictu) resides into the tissues and/or cells of the other partner. Since the partners frequently belong to different kingdoms, e.g. bacteria, fungi, protists and viruses living in association with animal and plant hosts, their shared “language” should be a basic and ancient form of communication able to effectively blur the boundaries between extremely different living entities. In recent years studies on the role of epigenetics in shaping host-symbiont interactions have been flourishing. Epigenetic changes include, but are not limited to, DNA methylation, remodelling of chromatin structure through histone chemical modifications and RNA interference. In this E-book we present a series of papers exploring the fascinating developmental and evolutionary relationship between symbionts and hosts, by focusing on the mediating epigenetic processes that enable the communication to be effective and robust at both the individual, the ecological and the evolutionary time scales. In particular, the papers consider the role of epigenetic factors and mechanisms in the interactions among different species, comprising the holobiont and host-parasite relationships. On the whole, since epigenetics is fast-acting and reversible, enabling dynamic developmental communication between hosts and symbionts at several different time scale, we argue that it could account for the enormous plasticity that characterizes the interactions between all the organisms living symbiotically on our planet.

30 years old: O-GlcNAc Reaches Age of Reason - Regulation of Cell Signaling and Metabolism by O-GlcNAcylation

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195916 Year: Pages: 113 DOI: 10.3389/978-2-88919-591-6 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Hundreds post-translational modifications (PTM) were characterized among which a large variety of glycosylations including O-GlcNAcylation. Since its discovery, O-GlcNAcylation has emerged as an unavoidable PTM widespread in the living beings including animal and plant cells, protists, bacteria and viruses. In opposition to N- and O-glycosylations, O-GlcNAcylation only consists in the transfer of a single N-acetylglucosamine moiety through a beta-linkage onto serine and threonine residues of proteins confined within the cytosol, the nucleus and the mitochondria. The O-GlcNAc group is provided by UDP-GlcNAc, the end-product of the hexosamine biosynthetic pathway located at the crossroad of cell metabolisms making O-GlcNAcylation a PTM which level tightly reflects nutritional status; therefore regulation of cell homeostasis should be intimately correlated to lifestyle and environment. Like phosphorylation, with which it can compete, O-GlcNAcylation is reversible. This versatility is managed by OGT (O-GlcNAc transferase) that transfers the GlcNAc group and OGA (O-GlcNAcase) that removes it. Also, like its unsweetened counterpart, O-GlcNAcylation controls fundamental processes, e.g. protein fate, chromatin topology, DNA demethylation and, as recently revealed, circadian clock. Deregulation of O-GlcNAc dynamism may be involved in the emergence of cancers, neuronal and metabolic disorders such as Alzheimer's or diabetes respectively. This Research Topic in Frontiers in Endocrinology is the opportunity to celebrate the thirtieth anniversary of the discovery of "O-GlcNAc" by Gerald W. Hart.

Experimental models of early exposure to alcohol: a way to unravel the neurobiology of mental retardation

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194728 Year: Pages: 104 DOI: 10.3389/978-2-88919-472-8 Language: English
Publisher: Frontiers Media SA
Subject: Pediatrics --- Psychiatry --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:33
License:

Loading...
Export citation

Choose an application

Abstract

Excessive alcohol drinking represents a major social and public health problem for several countries. Alcohol abuse during pregnancy leads to a complex syndrome referred to as fetal alcohol spectrum disorders (FASD), chiefly characterized by mental retardation. The effects of early exposure to ethanol can be reproduced in laboratory animals and this helped to answer several key questions concerning the human pathology. The interest of experimental models of FASD is twofold. First, they increase our knowledge about the dose and modality of alcohol consumption able to induce damaging effects on the developing brain. Second, experimental models of FASD can provide useful hints to elucidate the basic mechanisms leading to the intellectual disability. In fact, experimental exposure to alcohol can be carried out during discrete, often very restricted, time windows. As a consequence, FASD models, though depending on the multifaceted interference of alcohol with several molecular pathways, can provide valuable information about which specific developmental periods and brain areas are critically involved in the genesis of mental retardation. Putting together data obtained through several experimental paradigms of alcohol exposure and those deriving from other genetic and non-genetic models, one can figure out to what extent different types of mental retardation share common pathogenetic mechanisms. The present Research Topic is aimed at establishing the state of the art of the current research on experimental FASD, focusing on differences and homologies with other types of intellectual disability. The ultimate goal is to find out a common roadmap in view of future therapeutical approaches.

Listing 1 - 10 of 31 << page
of 4
>>
Sort by
Narrow your search

Publisher

Frontiers Media SA (17)

MDPI - Multidisciplinary Digital Publishing Institute (14)


License

CC by (17)

CC by-nc-nd (14)


Language

english (24)

eng (7)


Year
From To Submit

2019 (8)

2018 (7)

2017 (2)

2016 (8)

2015 (4)

2014 (2)