Search results: Found 3

Listing 1 - 3 of 3
Sort by
The Epithelial-to-Mesenchymal Transition (EMT) in Cancer

Author:
ISBN: 9783038427933 9783038427940 Year: Pages: VI, 254 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-04-27 16:09:54
License:

Loading...
Export citation

Choose an application

Abstract

The epithelial-to-mesenchymal transition (EMT) is a highly dynamic process with multiple transitional states, by which epithelial cells can convert into a mesenchymal phenotype. This process involves loss of cellular adhesion and cellular polarity, and an improvement in migratory and invasive properties. It occurs during normal embryonic development, tissue regeneration, organ fibrosis, and wound healing. It is also involved in tumor progression with metastatic expansion, and plays a major role in resistance to cancer treatment. In cancers, EMT inducers are hypoxia, cytokines and growth factors secreted by the tumor microenvironment, stroma crosstalk, metabolic changes, innate and adaptive immune responses, and treatment with antitumor drugs. Switch in gene expression from epithelial to mesenchymal phenotype is triggered by complex regulatory networks involving transcriptional control, non-coding RNAs, chromatin remodeling and epigenetic modifications, alternative splicing, post-translational regulation, protein stability and subcellular localization. Reversion of EMT, the mesenchymal-to-epithelial transition (MET), affects circulating cancer cells when they reach a desirable metastatic niche to develop secondary tumors. More knowledge and control of EMT to MET is necessary and will be beneficial for patients for cancer treatment. This current Special Issue entitled “Epithelial to Mesenchymal Transition in Cancer” will address these questions.

Cell Stress, Metabolic Reprogramming, and Cancer

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455652 Year: Pages: 68 DOI: 10.3389/978-2-88945-565-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The present eBook presents one review, five mini-reviews, and an opinion article on the achievements and perspectives of studies on important aspects of cancer cell metabolic reprogramming whose mechanisms and regulation are still largely elusive. It also sheds light on certain novel functional components, which rewires cell metabolism in tumor transformation.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search