Search results: Found 6

Listing 1 - 6 of 6
Sort by
Application of Essential Oils in Food Systems

Authors: ---
ISBN: 9783038970477 9783038970484 Year: Pages: 114 DOI: 10.3390/books978-3-03897-048-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences
Added to DOAB on : 2018-09-17 12:19:44
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue will look at the advances made in the essential oils. Essential oils have received increasing attention as natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Synthetic additives can reduce food spoilage, but the present generation is very health conscious and believes in natural products rather than synthetic ones due to their potential toxicity and other concerns. Therefore, one of the major emerging technologies is the extraction of essential oils from several plant organs and their application to foods. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties, so their use can be very useful to extend the food shelf-life. Although essential oils have been shown to be promising alternative to chemical preservatives, they present special limitations that must be solved before their application in food systems. Low water solubility, high volatility and strong odor are the main properties that make it difficult for food applications. Recent advances refer to new forms of application to avoid these problems are currently under study. Their application into packaging materials and coated films but also directly into the food matrix as emulsions, nanoemulsions, coated and others are some of their new applications.

Antibacterial Activity of Nanomaterials

Author:
ISBN: 9783038970491 9783038970507 Year: Pages: 328 DOI: 10.3390/books978-3-03897-050-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-09-14 10:27:20
License:

Loading...
Export citation

Choose an application

Abstract

Bacterial proliferation is a severe and increasing concern in everyday life, which accounts for important damage in a number of industries, from textile and marine transport to medicine and food packaging. Despite the huge efforts by academic and industry researchers, a universal solution for controlling bacterial colonization has not been established yet. In this regard, nanomaterials are more and more used to target bacteria as an alternative to antibiotics. Examples include the use of nanomaterials in antibacterial coatings for implantable devices and other materials to prevent infection and promote wound healing and in antibiotic delivery systems to treat diseases. By exploiting the excellent antibacterial properties of some materials at the nanoscale, namely ZnO, TiO2, Ag, Au, nanodiamond and graphene, effective strategies for the prevention of infections can be developed.The main focus of this book is, therefore, to present selected examples of the most recent advances in the synthesis, characterization, and applications of nanomaterials with antibacterial activity. The book is addressed to scientists and industry researchers, as well as to master and degree students in chemistry, pharmacy, bioengineering, biology and materials science. The Editor would like to thank the staff of Nanomaterials Editorial Office for the constant help and support.

Harm and Benefit of Plant and Fungal Secondary Metabolites in Food Animal Production

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455065 Year: Pages: 100 DOI: 10.3389/978-2-88945-506-5 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Animal Sciences --- Nutrition and Food Sciences
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Livestock species are either herbivores or omnivores that are maintained largely on plant-based diets. We have long appreciated the importance of understanding dietary plants from both nutritional and agronomic perspectives. However, it is increasingly clear that the fungi, bacteria and other microorganisms that live in the plants and animals are also significant factors in the ecology of agricultural animals. Many of the effects exerted on animals by dietary plants are attributable to secondary metabolites produced by the plants themselves or commensal microorganisms. Some fungal and plant secondary metabolites have multiple biological effects. We must be careful not to categorize a plant as strictly beneficial or harmful. Furthermore, we must be careful not to categorize even a particular plant or fungal compound as strictly beneficial or harmful. Rather, the harm or benefit of secondary metabolites are often dependent on the metabolic status of the animal, the interaction with other dietary factors including other secondary metabolites, and the dose received through the diet. This collection examines a range of agriculturally important plant and fungal products including essential oils, alkaloids, isoflavones and nitrates.

Electrospun and Electrosprayed Formulations for Drug Delivery

Authors: ---
ISBN: 9783038979128 / 9783038979135 Year: Pages: 190 DOI: 10.3390/books978-3-03897-913-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

This book is comprised of important reviews and cutting-edge original research papers concerning electrospun and electrosprayed formulations in drug delivery. Electrospinning and electrospraying have, in recent years, attracted increasing attention in the pharmaceutical sector, with research in the area advancing rapidly. It is now possible to prepare extremely complex systems using multi-fluid processes, and to increase production rates to an industrial scale. Electrospun formulations can be produced under GMP conditions and are in clinical trials. In this volume, we explore a range of topics around electrospinning and electrospraying in controlled drug delivery. Four reviews cover the exciting potential of cyclodextrin-containing fibers and the many potential biomedical applications of electrospun fibers. The use of electrospinning to prepare amorphous systems and improve the dissolution rate and solubility of poorly soluble active ingredients is addressed, and the possibilities of such materials in tissue engineering are comprehensively covered. The six original research papers cover the effect of molecular properties on API release from Eudragit-based electrospun fibers; ferulic acid solid dispersions; electrospun medicines to treat psoriasis; scale up of electrospinning and its use to produce low-dose tablets; transepithelial permeation of drugs released from electrospun fibers, and the possibilities for the synergistic chemophotothermal treatment of cancer.

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 / 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Biological Potential and Medical Use of Secondary Metabolites

Authors: ---
ISBN: 9783039211876 / 9783039211883 Year: Pages: 284 DOI: 10.3390/books978-3-03921-188-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Many macro and micro species, from terrestrial and aquatic environments, produce structurally unique compounds and, in many countries, still are the primary sources of medicines. In fact, secondary metabolites are an important source of chemotherapeutic agents but are also lead compounds for synthetic modification and the optimization of biological activity. Therefore, the exploitation of secondary metabolites, or their inspired synthetic compounds, offers excellent opportunities for the pharmaceutical industry. This Medicines Special Issue focuses on the great potential of secondary metabolites for therapeutic application. The Special Issue contains 16 articles reporting relevant experimental results, and an overview of bioactive secondary metabolites, their biological effects, and new methodologies that improve and accelerate the process of obtained lead compounds with regard to new drug development. We would like to thank all 83 authors, from all over the world, for their valuable contributions to this Special Issue.

Keywords

Juniperus --- secondary metabolites --- diterpenes --- flavonoids --- lignans --- cytotoxic --- antitumor --- antibacterial --- amentoflavone --- deoxypodophyllotoxin --- frankincense --- Boswellia --- cembranoids --- cneorubenoids --- boswellic acids --- molecular docking --- Scabiosa --- flavonoids --- iridoids --- pentacyclic triterpenoids --- antioxidant --- anti-inflammatory --- antibacterial --- anticancer --- Cordyceps militaris --- xanthine oxidase --- antioxidant --- antibacterial --- cordycepin --- GC-MS --- Artemisia species --- Artemisia vachanica --- artemisinin --- HPLC-PAD --- Tajikistan --- Malus x domestica --- Tuscany --- ancient varieties --- nutraceutics --- antioxidants --- polyphenols --- sugars --- pectin --- defensins --- secondary metabolites --- plant defense --- antimicrobial and anticancer activity --- medicine --- innate immunity --- cannabis --- cannabinoids --- therapeutics --- toxicology --- analytical determination --- legalization --- natural products --- biosynthetic gene clusters --- secondary metabolites --- antiSMASH --- Mitragyna speciosa --- kratom --- secondary metabolites --- therapeutic uses --- toxicology --- analysis --- Maytenus chiapensis --- Celastraceae --- quinonemethide triterpenoids --- pristimerin --- tingenone --- HPLC-PDA --- Ocimum sanctum --- Lamiaceae --- (-)-rabdosiin --- cytotoxic activity --- triterpenoids --- phenolic derivatives --- nanoemulsion --- essential oils --- vector control --- infectious diseases --- TCM --- phytochemistry --- LC-MS/MS --- antioxidant activity --- ABTS --- DPPH --- FRAP --- ascorbic acid --- EGCG --- total phenolics --- antimicrobial activity --- sargaquinoic acid --- sarganaphthoquinoic acid --- antiplasmodial --- malaria --- PPAR-? --- sargahydroquinoic acid --- sarganaphthoquinoic acid --- sargachromenoic acid --- inflammation --- bowel diseases --- secondary metabolites --- biological activities --- medicinal applications --- plants --- seaweeds

Listing 1 - 6 of 6
Sort by
Narrow your search