Search results: Found 10

Listing 1 - 10 of 10
Sort by
Ethylene: A Key Regulatory Molecule in Plants

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453412 Year: Pages: 310 DOI: 10.3389/978-2-88945-341-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Physiology
Added to DOAB on : 2018-11-22 11:28:10
License:

Loading...
Export citation

Choose an application

Abstract

Ethylene is a simple gaseous phytohormone with multiple roles in regulation of metabolism at cellular, molecular, and whole plant level. It influences performance of plants under optimal and stressful environments by interacting with other signaling molecules. Understanding the ethylene biosynthesis and action through the plant’s life can contribute to improve the knowledge of plant functionality and use of this plant hormone may drive adaptation and defense of plants from the adverse environmental conditions. The action of ethylene depends on its concentration in cell and the sensitivity of plants to the hormone. In recent years, research on ethylene has been focused, due to its dual action, on the regulation of plant processes at physiological and molecular level. The involvement of ethylene in the regulation of transcription needs to be widely explored involving the interaction with other key molecular regulators. The aim of the current research topic was to explore and update our understanding on its regulatory role in plant developmental mechanisms at cellular or whole plant level under optimal and changing environmental conditions. The present edited volume includes original research papers and review articles describing ethylene’s regulatory role in plant development during plant ontogeny and also explains how it interacts with biotic and abiotic stress factors. This comprehensive collection of researches provide evidence that ethylene is essential in different physiological processes and does not always work alone, but in coordinated manner with other plant hormones. This research topic is also a source of tips for further works that should be addressed for the biology and molecular effects on plants.

Ethylene's Role in Plant Mineral Nutrition

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199464 Year: Pages: 151 DOI: 10.3389/978-2-88919-946-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Terrestrial plants are sessile organisms that, differently from animals, can not move in searching of the nutrients and water they need. Instead, they have to change continuously their physiology and morphology to adapt to the environmental changes. When plants suffer from a nutrient deficiency, they develop physiological and morphological responses (mainly in their roots) aimed to facilitate the acquisition and mobilization of such a nutrient. Physiological responses include some ones like acidification of the rizhosphere and release of chelating agents into the medium; and morphological responses include others, like changes in root architecture and development of root hairs. The regulation of these responses is not totally known but in the last years different plant hormones and signaling substances, such as auxin, ethylene, cytokinins and nitric oxide, have been involved in their control. Besides hormones, oxidative stress has also been related with most of the nutrient deficiencies. The relationship of ethylene with the regulation of responses to nutrient deficiencies came from the nineties, when some works presented data suggesting its involvement in the regulation of responses to Fe and P deficiency. In the last years, the role of ethylene has been extended to many other nutrient deficiencies, such as K deficiency, Mg deficiency, S deficiency, N deficiency, and others. In most of the cases, it has been found that ethylene production, as well as the expression of ethylene synthesis genes, increases under these nutrient deficiencies. Furthermore, it has also been found that ethylene controls the expression of genes related to responses to different deficiencies. The involvement of ethylene in so many deficiencies suggests that it should act in conjunction with other signals that would confer nutrient-specificity to the distinct nutrient responses. These other signals could be plant hormones (auxin, cytokinins, etc) as well as other substances (nitric oxide, microRNAs, peptides, glutathione, etc), either originated in the roots or coming from the shoots through the phloem. The role of ethylene in the mineral nutrition of plants is even more complex that the one related to its role in the responses to nutrient deficiencies. Ethylene has also been implicated in the N2 fixation of legume plants; in salt tolerance responses; and in responses to heavy metals, such as Cd toxicity. All these processes are related to ion uptake and, consequently, are related to plant mineral nutrition. We consider a good opportunity to review all this information in a coordinated way. This Research Topic will provide an overview about the role of the plant hormone ethylene on the regulation of physiological and morphological responses to different nutrient deficiencies. In addition, it will cover other aspects of ethylene related to plant nutrition such as its role on salinity, N2 fixation and tolerance to heavy metals.

Keywords

Boron --- ethylene --- heavy metals --- Iron --- Nitrogen --- nodulation --- Phosphate --- Potassium --- Salinity --- Sulfur

Plant Organ Abscission: From Models to Crops

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453283 Year: Pages: 271 DOI: 10.3389/978-2-88945-328-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Plant organ abscission is a developmental process regulated by the environment, stress, pathogens and the physiological status of the plant. In particular, seed and fruit abscission play an important role in seed dispersion and plant reproductive success and are common domestication traits with important agronomic consequences for many crop species. Indeed, in natural populations, shedding of the seed or fruit at the correct time is essential for reproductive success, while for crop species the premature or lack of abscission may be either beneficial or detrimental to crop productivity. The use of model plants, in particular Arabidopsis and tomato, have led to major advances in our understanding of the molecular and cellular mechanisms underlying organ abscission, and now many workers pursue the translation of these advances to crop species. Organ abscission involves specialized cell layers called the abscission zone (AZ), where abscission signals are perceived and cell separation takes place for the organ to be shed. A general model for plant organ abscission includes (1) the differentiation of the AZ, (2) the acquisition of AZ cells to become competent to respond to various abscission signals, (3) response to signals and the activation of the molecular and cellular processes that lead to cell separation in the AZ and (4) the post-abscission events related to protection of exposed cells after the organ has been shed. While this simple four-phase framework is helpful to describe the abscission process, the exact mechanisms of each stage, the differences between organ types and amongst diverse species, and in response to different abscission inducing signals are far from elucidated. For an organ to be shed, AZ cells must transduce a multitude of both endogenous and exogenous signals that lead to transcriptional and cellular and ultimately cell wall modifications necessary for adjacent cells to separate. How these key processes have been adapted during evolution to allow for organ abscission to take place in different locations and under different conditions is unknown. The aim of the current collection of articles is to present and be able to compare recent results on our understanding of organ abscission from model and crop species, and to provide a basis to understand both the evolution of abscission in plants and the translation of advances with model plants for applications in crop species.

Hormonal Control of Important Agronomic Traits

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456864 Year: Pages: 416 DOI: 10.3389/978-2-88945-686-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

One of the goals of plant science is to improve agricultural sustainability, increasing yield, food diversity, and nutrition, while minimizing the negative impact on our environment. In response to internal and external cues, plant hormones control various aspects of plant growth and development. The wealth of our knowledge on plant hormones shall greatly advance sustainable agriculture.

"One rotten apple spoils the whole barrel": The plant hormone ethylene, the small molecule and its complexity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196234 Year: Pages: 132 DOI: 10.3389/978-2-88919-623-4 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

The gaseous molecule ethylene (C2H4), which is small in size and simple in structure, is a plant hormone most often associated with fruit ripening yet has a diversity of effects throughout the plant life cycle. While its agricultural effects were known even in ancient Egypt, the complexity of its mode of action and the broad spectrum of its effects and potential uses in plant physiology remain important scientific challenges today. In the last few decades, the biochemical pathway of ethylene production has been uncovered, ethylene perception and signaling have been molecularly dissected, ethylene-responsive transcription factors have been identified and numerous effects of ethylene have been described, ranging from water stress, development, senescence, reproduction plant-pathogen interactions, and of course, ripening. Thus ethylene is involved in plant development, in biotic and abiotic stress, and in reproduction. There is no stage in plant life that is not affected by ethylene, modulated by a complex and fascinating molecular machinery.

Solid Catalysts for the Upgrading of Renewable Sources

Authors: ---
ISBN: 9783038975724 Year: Pages: 226 DOI: 10.3390/books978-3-03897-573-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- Science (General)
Added to DOAB on : 2019-04-05 11:07:22
License:

Loading...
Export citation

Choose an application

Abstract

The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.

Siloxane-Based Polymers

Author:
ISBN: 9783038971252 / 9783038971269 Year: Pages: 188 DOI: 10.3390/books978-3-03897-126-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

fabrication --- multielectrode array (MEA) --- PDMS --- PDMS etching --- plateau-shaped electrode --- recessed electrode --- spinal cord signal recording --- underexposure --- organosilane --- quartz microcrystal --- encapsulant --- refractive index --- thermal conductivity --- poly(dimethylsiloxanes) --- surface modification --- nanosilica --- diethyl carbonate --- carbon content --- morphology --- coatings --- fillers --- hybrid hydrogel --- MAPOSS --- mechanical properties --- swelling --- drug release --- dental resin --- methacryl POSS --- shrinkage --- hardness --- scratch resistance --- ceramizable silicone rubber --- borate --- halloysite --- composite --- ceramizable mechanism --- polysiloxanes --- mortar --- basalt fibre --- roughness --- surface free energy --- poly(ethylene glycol) (PEG) --- hydrophilic --- non-releasable --- polydimethylsiloxane --- coatings --- cross-linking --- surface --- amphiphilic --- anti-bioadhesion --- hyperbranched poly(methylhydrosiloxanes) --- hydrolytic polycondensation --- 29Si-NMR --- topology of polysiloxane chains --- polyhedral oligomeric silsesquioxanes --- high molecular weight --- nanoparticles --- PDMS --- sugar templating process --- 3D porous network --- thermal stability --- TG-FTIR --- X-ray (Micro-CT) microtomography --- sol-gel --- hybrids --- chlorogenic acid --- bioactivity --- FTIR --- TG --- polysiloxanes --- theranostics --- drug delivery --- nanomedicine --- PDMS --- silicon --- ultraviolet (UV) curable coatings --- low surface energy materials --- fluorinated siloxane resin

Carbon Fibers and Their Composite Materials

Author:
ISBN: 9783039211029 / 9783039211036 Year: Pages: 186 DOI: 10.3390/books978-3-03921-103-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance.

Plant Innate Immunity 2.0

Author:
ISBN: 9783038975809 Year: Pages: 386 DOI: 10.3390/books978-3-03897-581-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

dieback --- disease management --- Lasiodiplodia theobromae --- mango --- pathogenicity --- Bromoviridae --- plant–virus interactions --- plant defense response --- Prune dwarf virus --- replication process --- systemic and local movement --- plant proteases --- plant immunity --- MTI --- ETI --- SAR --- ISR --- RNA silencing --- RTNLB --- Agrobacterium --- biotic stress responses --- calcium --- calcium signature --- calmodulin --- CMLs --- CDPKs --- plant immunity --- symbiosis --- cell wall --- cellulose synthase --- hypersensitive response --- pathogenesis related-protein 2 --- plant-virus interaction --- Potato virus Y --- ultrastructure --- aphid resistance --- Arabidopsis thaliana --- hydroperoxide lyase --- Macrosiphum euphorbiae --- Myzus persicae --- Solanum lycopersicum --- ?-3 fatty acid desaturase --- Arabidopsis --- azelaic acid --- glycerol-3-phosphate --- light dependent signalling --- methyl salicylate --- N-hydroxypipecolic acid --- pipecolic acid --- salicylic acid --- SAR signalling --- spectral distribution of light --- tobacco --- rice --- Chilo suppressalis --- mitogen-activated protein kinase 4 --- jasmonic acid --- salicylic acid --- ethylene --- herbivore-induced defense response --- downy mildew --- grapevine --- PRRs --- PTI --- VaHAESA --- bismerthiazol --- rice --- induced defense responses --- chemical elicitors --- Sogatella furcifera --- defense-related signaling pathways --- tomato gray mold --- tomato leaf mold --- Bacillus subtilis --- biological control --- Capsicum annuum --- Ralstonia solanacearum --- CaWRKY40b --- immunity --- negative regulator --- transcriptional modulation --- Capsicum annuum --- CaWRKY22 --- immunity --- Ralstonia Solanacearum --- WRKY networks --- metabolomics --- plant defence --- plant–microbe interactions --- priming --- pre-conditioning --- citrus decline disease --- Citrus sinensis --- Bakraee --- “Candidatus Liberibacter” --- “Candidatus Phytoplasma” --- microbiota --- innate immunity --- basal defense --- rice blast --- Magnaporthe oryzae --- proteomics --- iTRAQ --- candidate disease resistance gene --- disease resistance --- downy mildew --- garden impatiens --- leaf transcriptome --- New Guinea impatiens --- RNA-Seq --- polyphenol oxidase --- Camellia sinensis --- Ectropis obliqua --- wounding --- regurgitant --- rice --- OsGID1 --- gibberellin --- herbivore-induced plant defenses --- Nilaparvata lugens --- plant protection products --- agrochemicals --- sustainable crop protection --- food security

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 / 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Listing 1 - 10 of 10
Sort by
Narrow your search