Search results: Found 2

Listing 1 - 2 of 2
Sort by
Remote Sensing Applications for Agriculture and Crop Modelling

Author:
ISBN: 9783039282265 9783039282272 Year: Pages: 308 DOI: 10.3390/books978-3-03928-227-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling,

Keywords

crop residue management --- remote sensing --- satellite images --- hyperspectral sensor --- vegetation index --- yield monitoring --- remote sensing --- proximal sensing --- crop modeling --- soil --- plant --- management zone --- spatial variability --- temporal variability --- precision agriculture --- Á Trous algorithm --- conservation agriculture --- crop inventory --- remote sensing --- spectral-weight variations in fused images --- soil stoichiometry --- land use change --- soil organic carbon --- nitrogen --- Tarim Basin --- SPAD --- leaf nitrogen concentration --- nitrogen nutrition index --- grain yield --- dynamic model --- wheat --- disease --- yield --- septoria tritici blotch --- leaf area index --- crop modelling --- decision support system for agrotechnology transfer (DSSAT) --- Cropsim-CERES Wheat --- sorghum biomass --- prediction modeling --- machine learning --- fAPAR --- Sentinel-2 satellite imagery --- big data technology --- remote sensing --- UAV --- vegetation indices --- relative frequencies --- yield --- precision agriculture --- cultivars --- crop growth model --- data assimilation --- Leaf Area Index --- Sentinel-2 --- EPIC model --- yield estimation --- NDVI --- remote sensing --- GIS --- precision farming --- variable rate technology --- yield mapping --- protein content --- wheat --- canopy temperature depression --- NDVI --- RGB images --- grain yield --- ?13C --- UAV chemical application --- droplet drift --- flat-fan atomizer --- simulation analysis --- control variables --- agricultural land-cover --- multi-spectral --- generalized model --- machine learning --- crop type mapping --- Integrated Administration and Control System --- remote sensing --- hydroponic --- vegetable monitoring --- crop production --- spectral simulation --- hyperspectral data --- n/a --- fractional cover --- irrigation --- satellite --- crop simulation model --- AquaCrop --- yield mapping --- remote sensing --- durum wheat --- precision agriculture --- large cardamom --- remote sensing --- species modelling --- habitat assessment --- climate change

Google Earth Engine Applications

Authors: ---
ISBN: 9783038978848 9783038978855 Year: Pages: 420 DOI: 10.3390/books978-3-03897-885-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.

Keywords

Google Earth Engine --- NDVI --- vegetation index --- Landsat --- remote sensing --- phenology --- surface reflectance --- cropland mapping --- cropland areas --- 30-m --- Landsat-8 --- Sentinel-2 --- Random Forest --- Support Vector Machines --- segmentation --- RHSeg --- Google Earth Engine --- Africa --- remote sensing --- semi-arid --- ecosystem assessment --- land use change --- image classification --- seasonal vegetation --- carbon cycle --- Google Earth Engine --- crop yield --- gross primary productivity (GPP) --- data fusion --- Landsat --- MODIS --- MODIS --- Random Forest --- pasture mapping --- Brazilian pasturelands dynamics --- Google Earth Engine --- crop classification --- multi-classifier --- cloud computing --- time series --- high spatial resolution --- BACI --- Enhanced Vegetation Index --- Google Earth Engine --- cloud-based geo-processing --- satellite-derived bathymetry --- image composition --- pseudo-invariant features --- sun glint correction --- empirical --- spatial error --- Google Earth Engine --- low cost in situ --- Sentinel-2 --- Mediterranean --- burn severity --- change detection --- Landsat --- dNBR --- RdNBR --- RBR --- composite burn index (CBI) --- MTBS --- lower mekong basin --- landsat collection --- suspended sediment concentration --- online application --- google earth engine --- Landsat --- Google Earth Engine --- protected area --- forest and land use mapping --- machine learning classification --- China --- temporal compositing --- image time series --- multitemporal analysis --- change detection --- cloud masking --- Landsat-8 --- Google Earth Engine (GEE) --- Google Earth Engine --- LAI --- FVC --- FAPAR --- CWC --- plant traits --- random forests --- PROSAIL --- small-scale mining --- industrial mining --- google engine --- image classification --- land-use cover change --- seagrass --- habitat mapping --- image composition --- machine learning --- support vector machines --- Google Earth Engine --- Sentinel-2 --- Aegean --- Ionian --- global scale --- soil moisture --- Soil Moisture Ocean Salinity --- Soil Moisture Active Passive --- Google Earth Engine --- drought --- cloud computing --- remote sensing --- snow hydrology --- water resources --- Google Earth Engine --- user assessment --- MODIS --- snow cover --- flood --- disaster prevention --- emergency response --- decision making --- Google Earth Engine --- land cover --- deforestation --- Brazilian Amazon --- Bayesian statistics --- BULC-U --- Mato Grosso --- spatial resolution --- Landsat --- GlobCover --- SDG --- surface urban heat island --- Geo Big Data --- Google Earth Engine --- global monitoring service --- Google Earth Engine --- web portal --- satellite imagery --- trends --- earth observation --- wetland --- Google Earth Engine --- Sentinel-1 --- Sentinel-2 --- random forest --- cloud computing --- geo-big data --- cloud computing --- big data analytics --- long term monitoring --- data archival --- early warning systems

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2020 (1)

2019 (1)