Search results: Found 36

Listing 1 - 10 of 36 << page
of 4
>>
Sort by
Marine Lipids 2017

Authors: --- ---
ISBN: 9783038427995 9783038428008 Year: Pages: VIII, 160
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Education
Added to DOAB on : 2018-04-17 13:04:57
License:

Loading...
Export citation

Choose an application

Abstract

Marine organisms are a well-known source of lipids with high nutritional value, such as n-3 fatty acids (e.g., 20:5 and 22:6), but also possess bioactive properties (e.g., polar lipids as glycolipids and phospholipids). Polar lipids are considered high added value bioactive molecules with health promoting effects, and with potential applications in food, feed, and pharmaceutical industries. Although some polar lipids of marine organisms are known to have functional properties (e.g., anti-inflammatory, anti-proliferative, antioxidant and antimicrobial), the potential of these molecules is yet to be fully unravelled, as the lipidome of the majority of marine organisms remains largely unknown. Different marine organisms, even when closely related in the tree of life, display specific lipidome signatures, which are representative of the remarkable chemical biodiversity present in world oceans. Lipid composition can also change due to environmental and nutritional conditions. If one considers that each marine organism contains thousands of structurally and functionally diverse lipids, it is clear that the characterization of their lipidome is a challenging task. Nonetheless, in recent years, advanced analytical approaches coupling chromatography and mass spectrometry have emerged as powerful tools in lipidomic analysis. The resolution and high throughput analysis achieved with these analytical approaches has allowed researchers to identify and quantify the lipid species present on the cells and tissues of a diversity of marine organisms, opening new perspectives in the identification of lipid signatures for their valorisation and biotechnological applications.

Obesity and Diabetes: Energy Regulation by Free Fatty Acid Receptors

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197477 Year: Pages: 45 DOI: 10.3389/978-2-88919-747-7 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Food intake regulates energy balance and its dysregulation leads to metabolic disorder, such as obesity and diabetes. During feeding, free fatty acids (FFAs) are not only essential nutrients but also act as signaling molecules in various cellular processes. Recently, several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified; GPR40/FFAR1, GPR119, and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium-chain FFAs. GPR41/FFAR3 and GPR43/FFAR2 are activated by short-chain FFAs. These FFARs have come to be regarded as new drug targets for metabolic disorder such as obesity and type 2 diabetes, because a number of pharmacological and physiological studies have shown that these receptors are primarily involved in the energy metabolism in various tissues; insulin secretion, gastrointestinal hormone secretion, adipokine secretion, regulation of inflammation, regulation of autonomic nervous system, relation to gut microbiota, and so on. This Research Topic provides a comprehensive overview of the energy regulation by free fatty acid receptors and a new prospect for treatment of metabolic disorder such as obesity and type 2 diabetes.

Nutrition and Cancer

Author:
ISBN: 9783038428916 9783038428923 Year: Pages: VIII, 206 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Oncology --- Internal medicine
Added to DOAB on : 2018-06-22 11:04:15
License:

Loading...
Export citation

Choose an application

Abstract

The development and treatment of cancer presents a complex interaction between tumor and host. Provision of nutrients not only enables the maintenance of nutritional status, but also provides substrates and signals for immunity, tumor metabolism and protection of the host from treatment toxicities. Fat is one dietary element that has been explored for its role in cancer development. While the bulk of these studies have been observational or experimental, the evidence assembled suggests that dietary lipids behave uniquely to prevent or promote cancers. An additional aspect of cancer development is the role of adipose tissue as a source of, and a responder to, inflammatory signals that may be involved in tumor development. This Special Issue of Nutrients focuses on fat and cancer. The contributors to this Special Issue are well-recognized leaders in the field of cancer and have unique areas of focus including metabolism, immunology, biochemistry, epidemiology and nutrition. Each contribution highlights the latest research in these areas and what is known about fat and cancer with topics ranging from diet and cancer prevention, mechanisms of n-3 fatty acids on tumor development and the role of adipose tissue in cancer development and progression.

Insights into Microbe-Microbe Interactions in Human Microbial Ecosystems: Strategies to be Competitive

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450527 Year: Pages: 116 DOI: 10.3389/978-2-88945-052-7 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a “healthy status”. The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats.All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a “healthy status”. The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats.

Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450824 Year: Pages: 88 DOI: 10.3389/978-2-88945-082-4 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The general process of lipid peroxidation consists of three stages: initiation, propagation, and termination. The initiation phase of lipid peroxidation includes hydrogen atom abstraction. Several species can abstract the first hydrogen atom and include the radicals: hydroxyl, alkoxyl, peroxyl, and possibly HO* 2. The membrane lipids, mainly phospholipids, containing polyunsaturated fatty acids are predominantly susceptible to peroxidation because abstraction from a methylene group of a hydrogen atom, which contains only one electron, leaves at the back an unpaired electron on the carbon. The initial reaction of *OH with polyunsaturated fatty acids produces a lipid radical (L*), which in turn reacts with molecular oxygen to form a lipid hydroperoxide (LOOH). Further, the LOOH formed can suffer reductive cleavage by reduced metals, such as Fe++, producing lipid alkoxyl radical (LO*). Peroxidation of lipids can disturb the assembly of the membrane, causing changes in fluidity and permeability, alterations of ion transport and inhibition of metabolic processes. In addition, LOOH can break down, frequently in the presence of reduced metals or ascorbate, to reactive aldehyde products, including malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (4-HHE) and acrolein. Lipid peroxidation is one of the major outcomes of free radical-mediated injury to tissue mainly because it can greatly alter the physicochemical properties of membrane lipid bilayers, resulting in severe cellular dysfunction. In addition, a variety of lipid by-products are produced as a consequence of lipid peroxidation, some of which can exert beneficial biological effects under normal physiological conditions. Intensive research performed over the last decades have also revealed that by-products of lipid peroxidation are also involved in cellular signalling and transduction pathways under physiological conditions, and regulate a variety of cellular functions, including normal aging. In the present collection of articles, both aspects (adverse and benefitial) of lipid peroxidation are illustrated in different biological paradigms. We expect this eBook may encourage readers to expand the current knowledge on the complexity of physiological and pathophysiological roles of lipid peroxidation.

Fatty Acids and Cardiometabolic Health

Authors: ---
ISBN: 9783038978909 9783038978916 Year: Pages: 202 DOI: 10.3390/books978-3-03897-891-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The impact of fat intake on hypercholesterolemia and related atherosclerotic cardiovascular diseases has been studied for decades. However, the current evidence base suggests that fatty acids also influences cardiometabolic diseases through other mechanisms including effects on glucose metabolism, body fat distribution, blood pressure, inflammation, and heart rate. Furthermore, studies evaluating single fatty acids have challenged the simplistic view of shared health effects within fatty acid groups categorized by degree of saturation. In addition, investigations of endogenous fatty acid metabolism, including genetic studies of fatty acid metabolizing enzymes, and the identification of novel metabolically derived fatty acids have further increased the complexity of fatty acids’ health impacts. This Special Issue aims to include original research and up-to-date reviews on genetic and dietary modulation of fatty acids, and the role and function of dietary and metabolically derived fatty acids in cardiometabolic health.

Diet in Brain Health and Neurological Disorders: Risk Factors and Treatments

Author:
ISBN: 9783039216505 9783039216512 Year: Pages: 68 DOI: 10.3390/books978-3-03921-651-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

The role of nutrition in health and disease has been appreciated from time immemorial. Around 400 B.C., Hippocrates wrote “Let food by thy medicine and medicine be thy food.” In the 12th century, the great philosopher and physician Moses Maimonides wrote “any disease that can be treated by diet should be treated by no other means.” Now, in the 21st century, we are bombarded by claims in the media of “superfoods,” wondrous nutritional supplements, and special diets that promise to cure or prevent disease, improve health and restore functioning. Much of the focus has been on neurological disease, brain health and psychological functioning (behavior, cognition, and emotion). The hyperbole aside, there has been considerable progress in the past decade in our understanding of the contribution of specific nutrients and dietary patterns to brain development, physiology, and functioning. This Special Issue of Brain Sciences is devoted to the latest research on the role of nutritional deficiencies and excesses in the genesis of brain dysfunction, and use of diet for the prevention and treatment of brain and mental disorders. Basic laboratory and clinical research studies of the immature, adult, and aged nervous system are all welcome.

Analytical Technology in Nutrition Analysis

Author:
ISBN: 9783039287642 / 9783039287659 Year: Pages: 172 DOI: 10.3390/books978-3-03928-765-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Due to increasing global food needs as a result of population growth, the use of new food sources has gained interest in the last decade. However, the inclusion of new foods in our diet, as well as the increased interest of the population in consuming foods with better nutritional properties, has increased the need for adequate food analytical methods. This monographic issue presents innovative methods of chemical analysis of foods, as well as the nutritional and chemical characterization of foods whose consumption is expected to increase worldwide in the coming years.

Safety and Microbiological Quality

Authors: ---
ISBN: 9783039214914 9783039214921 Year: Pages: 126 DOI: 10.3390/books978-3-03921-492-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The safety and microbiological quality of fermented foods covers complementary aspects of such products. Food fermentation is primary intended to improve food preservation, thereby modifying food properties. However, the management of chemical and microbiological hazards is a leading aspect for innovative processing in this domain. Similarly, microbiological quality in fermented foods is of peculiar importance: all microorganisms with a positive effect, including probiotic bacteria, fermentative bacteria, Saccharomyces and non-Saccharomyces yeasts, can be relevant. The fitness of pro-technological microorganisms impacts nutritional quality, but also sensory properties and processing reliability. This book provides a broad view of factors which determine the safety and microbiological quality of fermented foods. A focus is made on the interconnection between starter properties and the expectations related to a probiotic effect. All chapters underline the involvement of fermented foods towards better resource management and increasing food and nutritional security, especially in developing countries.

Listing 1 - 10 of 36 << page
of 4
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (33)

Frontiers Media SA (3)


License

CC by-nc-nd (32)

CC by (4)


Language

english (25)

eng (10)


Year
From To Submit

2020 (15)

2019 (14)

2018 (3)

2017 (1)

2016 (2)

2015 (1)