Search results:
Found 2
Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches.
Control Theory --- Engineering Design Tradeoffs --- Robust Control --- Feedback Control Systems --- Wolfram Mathematica Software --- Optimal Control
Choose an application
Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.
epidermal electronics --- wearable heater --- temperature sensor --- feedback control --- droplet circuits --- liquid metal --- quantum tunneling effect --- solution electronics --- electron transport --- ionic conduction --- quantum computing --- brain-like intelligence --- flexible organic electronics --- artificial synapses --- neuromorphic computing --- long-term plasticity --- flexible electronics --- nano-fabrication --- top-down approaches --- bottom-up approaches --- variable optical attenuator (VOA) --- surface plasmon-polariton (SPP) --- microwave photonics --- stretchability --- electronic measurements --- stretchable circuits --- design metrics --- reliability --- island-bridge --- conformal design --- non-developable surface --- stretchable electronics --- epidermal sensors --- stretchable electronics --- wireless power --- hydrophobic paper --- wearable stimulators --- paper electronics --- low-cost manufacture --- stretchable electronics --- tunnel encapsulation --- Polyvinyl Alcohol --- durability --- bio-integrated devices --- tissue adhesives --- tunable adhesion --- dry/wet conditions --- soft biological tissue --- n/a
Listing 1 - 2 of 2 |
Sort by
|