Search results: Found 22

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Horizontaltragfähigkeit von Wänden aus Leichtbeton-Schalungssteinen - Experimente und numerische Modellierung

Author:
Book Series: Karlsruher Reihe Massivbau, Baustofftechnologie, Materialprüfung / Institut für Massivbau und Baustofftechnologie ; Materialprüfungs- und Forschungsanstalt Karlsruhe ISSN: 1869912X ISBN: 9783731504139 Year: Volume: 77 Pages: X, 164 p. DOI: 10.5445/KSP/1000048086 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This work deals with the experimental , static - cyclic testing of large-scale tests on walls made from hollow blocks. Based on this non-linear finite element models are developed and verified using the extensive experimental data ,whereby a semi - empirical design concept could finally be derived for hollow concrete masonry walls by a parametric study .

Implantable Microdevices

Authors: ---
ISBN: 9783039216604 9783039216611 Year: Pages: 132 DOI: 10.3390/books978-3-03921-661-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Implantable microdevices, providing accurate measurement of target analytes in animals and humans, have always been important in biological science, medical diagnostics, clinical therapy, and personal healthcare. Recently, there have been increasing unmet needs for developing high-performance implants that are small, minimally-invasive, biocompatible, long-term stable, and cost-effective. Therefore, the aim of this Special Issue is to bring together state-of-the-art research and development contributions that address key challenges and topics related to implantable microdevices. Applications of primary interest include, but are not limited to, miniaturized optical sensing and imaging tools, implantable sensors for detecting biochemical species and/or metabolites, transducers for measuring biophysical quantities (e.g., pressure and/or strain), and neural prosthetic devices.

Sports Materials

Authors: --- --- ---
ISBN: 9783039281626 9783039281633 Year: Pages: 166 DOI: 10.3390/books978-3-03928-163-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Advances in materials are crucial to the development of sports equipment, from tennis rackets to skis to running shoes. Materials-driven improvements in equipment have helped athletes perform better, while enhancing safety and making sport more accessible and enjoyable. This book brings together a collection of 10 papers on the topic of sports materials, as published in a Special Issue of Applied Sciences. The papers within this book cover a range of sports, including golf, tennis, table tennis and baseball. State-of-the-art engineering techniques, such as finite element modelling, impact testing and full-field strain measurement, are applied to help further our understanding of sports equipment mechanics and the role of materials, with a view to improving performance, enhancing safety and facilitating informed regulatory decision making. The book also includes papers that describe emerging and novel materials, including auxetic materials with their negative Poisson’s ratio (fattening when stretched) and knits made of bamboo charcoal. This collection of papers should serve as a useful resource for sports engineers working in both academia and industry, as well as engineering students who are interested in sports equipment and materials.

Advances in CAD/CAM/CAE Technologies

Authors: --- ---
ISBN: 9783039287406 / 9783039287413 Year: Pages: 116 DOI: 10.3390/books978-3-03928-741-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations.

Permanent Magnet Synchronous Machines

Author:
ISBN: 9783039213504 9783039213511 Year: Pages: 282 DOI: 10.3390/books978-3-03921-351-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.

Keywords

PMSM (permanent magnet synchronous motor) --- DB-DTFC (deadbeat-direct torque and flux control) --- torque control --- stability --- permanent-magnet machine --- brushless machine --- Vernier machine --- flux switching machine --- multiphase machine --- outer rotor --- electric vehicle --- interior permanent magnet synchronous machines --- magnetic reluctance network --- brushless dc motor --- phase-advanced method --- winding inductance --- sub-fractional slot-concentrated winding --- field weakening --- periodic timer interrupt --- Brushless DC motors --- current ripples --- current spikes --- modeling --- back electromotive force --- R-C filter --- cogging torque --- permanent magnet synchronous generator --- small wind turbines --- finite element method --- renewable energy --- energy conversion --- finite element analysis --- pulse width modulation --- permanent magnet synchronous generator --- wind generator --- MPC --- PMSM --- vector control --- speed tracking --- brushless DC (BLDC) motor --- sensorless motor --- commutation error compensation --- free-wheeling period --- permanent magnet synchronous motor (PMSM) --- sliding mode observer (SMO) --- parameter perturbation --- predictive current control (PCC) --- digital simulation --- motor drives --- interior permanent-magnet machines --- finite-element analysis --- modeling --- automotive applications --- electric vehicle (EV) --- hybrid electric vehicle (HEV) --- mathematical model --- saturation --- coils --- design tools --- energy efficiency --- linear generator --- power control --- stator --- wave power --- permanent magnet synchronous generator --- electrical machine design --- permanent magnet material --- bulk electric system --- condition monitoring --- electrical signature analysis --- fault diagnosis --- predictive maintenance --- synchronous generator --- permanent magnet synchronous machine (PMSM) --- flying start --- sensorless control --- permanent magnet synchronous generator --- permanent magnet synchronous motor --- electric propulsion systems --- renewable energy --- energy conversion

Sol-Gel Chemistry Applied to Materials Science

Author:
ISBN: 9783039213535 9783039213542 Year: Pages: 216 DOI: 10.3390/books978-3-03921-354-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Sol–gel technology is a contemporary advancement in science that requires taking a multidisciplinary approach with regard to its various applications. This book highlights some applications of the sol–gel technology, including protective coatings, catalysts, piezoelectric devices, wave guides, lenses, high-strength ceramics, superconductors, synthesis of nanoparticles, and insulating materials. In particular, for biotechnological applications, biomolecules or the incorporation of bioactive substances into the sol–gel matrix has been extensively studied and has been a challenge for many researchers. Some sol–gel materials are widely applied in light-emitting diodes, solar cells, sensing, catalysis, integration in photovoltaic devices, and more recently in biosensing, bioimaging, or medical diagnosis; others can be considered excellent drug delivery systems. The goal of an ideal drug delivery system is the prompt delivery of a therapeutic amount of the drug to the proper site in the body, where the desired drug concentration can be maintained. The interactions between drugs and the sol–gel system can affect the release rate. In conclusion, the sol–gel synthesis method offers mixing at the molecular level and is able to improve the chemical homogeneity of the resulting composite. This opens new doors not only regarding

Keywords

sol-gel method --- Fourier transform infrared spectroscopy (FTIR) analysis --- bioactivity --- biocompatibility --- sol–gel method --- organic-inorganic hybrids --- chlorogenic acid --- cytotoxicity --- biocompatibility --- silsesquioxanes --- thiol-ene click reaction --- in situ water production --- hydrophobic coatings --- cotton fabric --- paper --- NMR --- wettability --- sol-gel --- hollow sphere --- 1D structure --- sol-gel --- thin-disk laser --- Yb-doped glasses --- aluminosilicate glasses --- photoluminescence --- ultrasonic spray deposition --- tungsten oxide --- lithium lanthanum titanium oxide --- conformal coating --- Li-ion batteries --- sol-gel technique --- biomaterials --- cell proliferation --- cell cycle --- one transistor and one resistor (1T1R) --- organic thin-film transistor (OTFT) --- resistive random access memory (RRAM) --- sol-gel --- lithium-ion battery --- LiMnxFe(1?x)PO4 --- carbon coating --- pseudo-diffusion coefficient --- potential step voltammetry --- electrochemical impedance spectroscopy --- sol-gel --- oxyfluoride glass-ceramics --- nanocrystal --- optical properties --- sol-gel method --- SiO2–based hybrids --- poly(?-caprolactone) --- TG-DSC --- TG-FTIR --- X-ray diffraction analysis --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- organic–inorganic hybrid materials --- biomedical applications --- metal oxides --- multi-layer --- surface plasmon resonance --- optical sensors --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- hybrid materials --- biomedical applications

Tribological Performance of Artificial Joints

Authors: ---
ISBN: 9783039210787 9783039210794 Year: Pages: 178 DOI: 10.3390/books978-3-03921-079-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Surgery
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of the implants could be adversely affected due to the loss of materials in the form of particles or ions as the bearing surfaces articulate against earch other. The consequent tissue and immune response to the wear products, remain one of the key factors of their failure. Tribology has been defined as the science and technology of interacting surfaces in relative motion and all related wear products (e.g., particles, ions, etc.). Over the last few decades, in an attempt to understand and improve joint replacement technology, the tribological performance of several material combinations have been studied experimentally and assessed clinically. In addition, research has focused on the biological effects and long term consequences of wear products. Improvements have been made in manufacturing processes, precision engineering capabilities, device designs and materials properties in order to minimize wear and friction and maximize component longevity in vivo.

Continuous Casting

Author:
ISBN: 9783039213214 9783039213221 Year: Pages: 250 DOI: 10.3390/books978-3-03921-322-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Continuous casting is an industrial process whereby molten metal is solidified into a semi-finished billet, bloom, or slab for subsequent rolling in finishing mills; it is the most frequently used process to cast not only steel, but also aluminium and copper alloys. Since its widespread introduction for steel in the 1950s, it has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardized production of a product, as well as providing increased control over the process through automation. Nevertheless, challenges remain and new ones appear, as ways are sought to minimize casting defects and to cast alloys that could originally only be cast via other means. This Special Issue of the journal ""Metals"" consists of 14 research articles that cover many aspects of experimental work and theoretical modelling related to the ongoing development of continuous casting processes.

Keywords

slab continuous casting --- hybrid simulation model --- uneven secondary cooling --- numerical simulation --- molten steel flow --- solidification --- inclusion motion --- inclusion entrapment --- billet continuous casting --- swirling flow tundish --- multiphase flow --- heat transfer --- mold --- continuous casting --- numerical simulation --- round bloom --- continuous casting --- final electromagnetic stirring --- electromagnetic field --- polycrystalline model --- pores --- inclusions --- mechanism --- beam blank --- crystal --- propagation --- asymptotic analysis --- numerical simulation --- continuous casting --- air mist spray cooling --- continuous casting --- heat flux --- HTC --- secondary cooling --- thin-slab cast direct-rolling --- austenite grain coarsening --- grain growth control --- liquid core reduction --- secondary cooling --- two-phase pinning --- annular argon blowing --- upper nozzle --- flow behavior --- argon gas distribution --- tundish --- continuous casting --- bulge deformation --- thermomechanical coupling --- segmented roller --- finite element analysis --- steel tundish --- baffle --- flow field --- velocity --- PIV --- multi-source information fusion --- data stream --- continuous casting --- roll gap value --- prediction --- global optimization --- support vector regression --- variational mode decomposition --- empirical mode decomposition --- support vector regression --- mold level --- continuous casting --- magnetohydrodynamics --- fluid flow --- bubbles --- inclusions --- entrapment --- entrainment --- heat transfer --- solidification --- slab mold --- continuous casting --- n/a

Advanced Approaches Applied to Materials Development and Design Predictions

Authors: --- --- --- --- et al.
ISBN: 9783039284122 9783039284139 Year: Pages: 164 DOI: 10.3390/books978-3-03928-413-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX), organized at University of Porto, Portugal, in 2018. In this issue, the limits of the current generation of materials are explored, which are continuously being reached according to the frontier of hostile environments, whether in the aerospace, nuclear, or petrochemistry industry, or in the design of gas turbines where efficiency of energy production and transformation demands increased temperatures and pressures. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on failure mechanism modeling and simulation of materials are covered. As the Guest Editors, we would like to thank all the authors who submitted papers to this Special Issue. All the papers published were peer-reviewed by experts in the field whose comments helped to improve the quality of the edition. We also would like to thank the Editorial Board of Materials for their assistance in managing this Special Issue.

Advances in Wood Composites

Author:
ISBN: 9783039285846 / 9783039285853 Year: Pages: 210 DOI: 10.3390/books978-3-03928-585-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Wood composites have shown very good performance, and substantial service lives when correctly specified for the exposure risks present. Selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment or by wood modification techniques. This Special Issue, Advances in Wood Composites presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials, which have made them a particular area of interest for researchers. In addition, it reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetrically by the structure of wood and wood composites. This Special Issue, with a collection of 13 original contributions, provides selected examples of recent Advances in Wood Composites

Keywords

wood --- thermal modification --- mechanical properties --- dimensional stability --- color --- chemical structure --- VOCs --- alder plywood --- high-density polyethylene film --- bending strength --- modulus of elasticity in bending --- shear strength --- thickness swelling --- water absorption --- activation volume --- creep behavior --- sol-gel process --- stepped isostress method --- wood-inorganic composites --- wood adhesive --- tunnel-structured --- sepiolite --- rapid formaldehyde release --- wood plastic composite --- graphene nano-platelets --- thermal property --- mechanical property --- water-based UV curing coating --- coating amount --- surface properties --- polyurethane-acrylate --- oak (Quercus alba L.) --- bamboo --- carbothermal reduction --- ceramic --- silicon carbide --- sol–gel process --- thermal modification --- nanocompounds --- mechanical and physical properties --- cellulose --- crystallinity --- biorefinery lignin --- wood panels --- sustainable adhesives --- adhesive penetration --- particleboard properties --- formaldehyde emissions --- bamboo --- chemical modification --- dimensional stability --- dynamic thermodynamic --- acetic anhydride --- methyl methacrylate --- polymer-triticale boards --- thermoplastic polymers --- straw --- hydrophobicity --- mechanical properties --- oriented strand lumber (OSL) --- nanowollastonite --- mechanical and physical properties --- UF resin --- buckling --- WPC --- HDPE --- Southwell’s method --- finite element analysis --- Abaqus --- aquacultural --- structural analysis --- wood --- plastic --- composite --- n/a

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Narrow your search