Search results: Found 6

Listing 1 - 6 of 6
Sort by
Herstellung und Charakterisierung mechanisch flexibler organischer Solarzellen durch Flüssigprozessierung

Author:
ISBN: 9783731503996 Year: Pages: II, 137 p. DOI: 10.5445/KSP/1000047609 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This document presents the development and optoelectronic analysis of a flexible electrode system. The focus is the application of all functional layers out of solution to enable a cost effective processing with large area print and coating techniques. Moreover, the mechanical stability of the electrode system and the complete solar cell is investigated by tensile tests.

Mechanische Zuverlässigkeit von gedruckten und gasförmig abgeschiedenen Schichten auf flexiblem Substrat

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731502500 Year: Volume: 41 Pages: VI, 153 p. DOI: 10.5445/KSP/1000042371 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

In dieser Arbeit wird das Schädigungsverhalten von ITO-Schichten und von linienförmig strukturierten Silberschichten (Silbergrids) auf flexiblem Substrat geprüft. Ein weiterer Schwerpunkt liegt in der mechanischen Untersuchung von gedruckten Silberschichten. So wird der Effekt von Wärmebehandlungen auf Schichten aus nanopartikulärer Tinte analysiert. Außerdem werden Schichten aus metallorganischen Tinten mit unterschiedlichen Schichtdicken im Vergleich zu evaporierten Proben untersucht.

Organic Semiconductors

ISBN: 9783906980966 9783906980973 Year: Pages: 260 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 07:55:44
License:

Loading...
Export citation

Choose an application

Abstract

Over the last few years Organic Semiconducting industry showed significant growth in many areas dominated by conventional electronics. The foremost advantage of organic materials is that they are cheap, lightweight and flexible. In addition, the fabrication of organic materials from a defined molecular precursor using inkjet−printing technology is simple, bypassing the need for advanced semiconductor processing techniques. Organic thin films have already found confirmed and reliable applications in flexible displays, solar cells and biomedical applications, including implantable devices. Low cost materials, compatible with current organic electronic fabrication techniques and which improve device performance are in strong demand.This special issue of Organic Semiconductors covers Materials, Fabrication Techniques, Characterization, Devices and market adoption of Organic Semiconductors.

Influence of strain on the functionality of ink-jet printed thin films and devices on flexible substrates

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731508533 Year: Volume: 77 Pages: X, 127 p. DOI: 10.5445/KSP/1000086125 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Ink-jet printed devices on the flexible substrate are inexpensive and large area compatible as compared to rigid substrates. However, during fabrication and service they are subjected to complex strains, resulting in crack formation or delamination within the layers, affecting the device performance. Therefore, it is necessary to understand their failure mechanisms by correlating their electrical or structural properties with applied strain, supported by detailed microstructural investigations.

Flexible and Stretchable Electronics

Authors: --- ---
ISBN: 9783038424369 9783038424376 Year: Pages: VIII, 172 DOI: 10.3390/books978-3-03842-437-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2017-06-27 09:51:34
License:

Loading...
Export citation

Choose an application

Abstract

Flexible and stretchable electronics are receiving tremendous attention as future electronics due to their flexibility and light weight, especially as applications in wearable electronics. Flexible electronics are usually fabricated on heat sensitive flexible substrates such as plastic, fabric or even paper, while stretchable electronics are usually fabricated from an elastomeric substrate to survive large deformation in their practical application. Therefore, successful fabrication of flexible electronics needs low temperature processable novel materials and a particular processing development because traditional materials and processes are not compatible with flexible/stretchable electronics. Huge technical challenges and opportunities surround these dramatic changes from the perspective of new material design and processing, new fabrication techniques, large deformation mechanics, new application development and so on. Here, we invited talented researchers to join us in this new vital field that holds the potential to reshape our future life, by contributing their words of wisdom from their particular perspective.

Flexible Electronics: Fabrication and Ubiquitous Integration

Author:
ISBN: 9783038978282 / 9783038978299 Year: Pages: 160 DOI: 10.3390/books978-3-03897-829-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.

Listing 1 - 6 of 6
Sort by
Narrow your search
-->