Search results: Found 8

Listing 1 - 8 of 8
Sort by
Sulfur-tolerant natural gas reforming for fuel-cell applications

Author:
ISBN: 9783866444591 Year: Pages: II, 144 p. DOI: 10.5445/KSP/1000014763 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Chemical Engineering
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has not been available thus far. In this work it is demonstrated that a tailor made rhodium catalyst retains useful activity for typical sulfur levels in the feed. A brief economic comparison showed however that this alternative process is still less economical than the traditional process employing removal of sulfur components by adsorption.

Catalysis for Low Temperature Fuel Cells

Authors: ---
ISBN: 9783038426585 9783038426592 Year: Pages: 210 DOI: 10.3390/books978-3-03842-659-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-01-24 13:49:23
License:

Loading...
Export citation

Choose an application

Abstract

Today, the development of active and stable catalysts still represents a challenge to overcome in the research field of low temperature fuel cells. Operation at low temperatures demands the utilization of highly active catalysts to reduce the activation energy of the electrochemical reactions involved at the electrodes, and thus obtain practical performances and high efficiencies. At present, the most practical catalysts in low temperature fuel cells are highly dispersed Pt nanoparticles. However, these present several drawbacks such as high cost, limited earth resources, sensitivity to contaminants, low tolerance to the presence of alcohols and stability due to carbon support corrosion and Pt dissolution. In the search for alternative catalysts, researchers have looked at several strategies: increase of the utilization of Pt catalysts by means of novel structures (metal/support), alloying with non-platinum metals, new carbon and non-carbon supports, cheaper platinum-group-metals like Pd, non-platinum-group metals catalysts (Fe-N-C, Co-N-C, etc.), etc. This book is intended to cover the most recent progresses in advanced electro-catalysts from the synthesis and characterization to the evaluation of performance and degradation mechanisms, in order to gain insights towards the development of highly active fuel cells.

Ceramic Conductors

Authors: ---
ISBN: 9783038979562 / 9783038979579 Year: Pages: 184 DOI: 10.3390/books978-3-03897-957-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.

Electrochemical Surface Science: Basics and Applications

Authors: ---
ISBN: 9783039216420 / 9783039216437 Year: Pages: 398 DOI: 10.3390/books978-3-03921-643-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.

Keywords

electrosynthesis --- switchable surfaces --- alkoxyamine surfaces --- redox monolayers --- porphyrins --- self-assembly --- surface nanostructures --- in situ EC-STM --- metal-electrolyte interface --- potential-dependent structures --- combined non-covalent control --- ECALE --- CdS --- silver single crystals --- alkanthiols --- SAMs --- EQCM --- AES --- polypyrrole --- diazonium salts --- flexible ITO --- adhesion --- redox properties --- X-ray absorption spectroscopy --- energy dispersive --- quick-XAS --- FEXRAV --- free electron laser --- electrochemistry --- photoelectrochemistry --- photochemistry --- pump &amp --- probe --- oxygen evolution reaction --- water splitting --- iridium --- thin-films --- spin-coating --- model systems --- electrocatalysts --- oxygen evolution reaction --- iridium --- nickel --- electrodeposition --- model catalyst --- water oxidation --- CO oxidation --- DFT --- hydrogen adsorption --- Pt–Ru catalysts --- ordered mesoporous carbons --- graphitization --- CO oxidation --- methanol oxidation --- direct methanol fuel cells --- electrocatalysis --- catalysts --- methanol oxidation reaction --- graphene --- DMFC --- Pt --- SOFC --- cathode --- XAFS --- in situ --- cobalt oxide --- water oxidation --- photo-electrochemistry --- hydroxyl radical --- electro-oxidation --- Lead OPD --- surface alloy --- XPS --- UPS --- EF-PEEM --- ORR --- Platinum --- PVDF --- PEMFC --- in situ ambient pressure XPS --- hard X rays --- photoelectron simulations --- solid/liquid interface --- TiO2 --- APTES --- Cu(111) --- electrochemical interface --- in-situ X-ray diffraction --- carbon nanofiber --- porous fiber --- electrospinning --- mesopore --- micropore --- porogen --- ammonia activation --- surface area --- methanol oxidation --- platinum single crystals --- pH and concentration effects --- adsorbed OH --- reduced graphene oxide --- electrophoretic deposition --- surface chemistry --- click chemistry --- gold --- palladium --- bimetallic alloy --- carbon nanofibers (CNFs) --- cyclic voltammetry (CV) --- Surface Modification --- Blackening of Steel --- Magnetite --- Corrosion Protection --- Auger-Electron Spectroscopy --- Ordered mesoporous carbon --- nitrogen doping --- cobalt-based electrocatalyst --- bifunctional oxygen electrode --- solvothermal method --- underpotential deposition (upd) --- Au --- Pt --- Pd --- nanoparticles --- cyclic voltammetry --- electrocatalysis --- operando --- near ambient pressure XPS --- scanning photoelectron microscopy --- solid oxide fuel cells --- surface science --- electrodeposited alloys --- CO electro-oxidation --- Pt single-crystal electrodes --- potential cycling --- potential stepping --- surface reconstruction --- electrocatalysis --- oxygen reduction --- ORR --- gas diffusion electrode --- platinum --- fuel cells --- thin-films --- benchmarking --- mass transport --- formic acid oxidation --- Au nanocrystals --- Pd thin films --- electrocatalysis --- d-band theory --- polymer --- silicon nanoparticles --- EPR spectroscopy --- photoconversion --- n/a

Plasmonics and its Applications

Author:
ISBN: 9783038979142 / 9783038979159 Year: Pages: 196 DOI: 10.3390/books978-3-03897-915-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Plasmonics is a rapidly developing field that combines fundamental research and applications ranging from areas such as physics to engineering, chemistry, biology, medicine, food sciences, and the environmental sciences. Plasmonics appeared in the 1950s with the discovery of surface plasmon polaritons. Plasmonics then went through a novel propulsion in the mid-1970s, when surface-enhanced Raman scattering was discovered. Nevertheless, it is in this last decade that a very significant explosion of plasmonics and its applications has occurred. Thus, this book provides a snapshot of the current advances in these various areas of plasmonics and its applications, such as engineering, sensing, surface-enhanced fluorescence, catalysis, and photovoltaic devices.

Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions

Authors: --- ---
ISBN: 9783039215409 / 9783039215416 Year: Pages: 190 DOI: 10.3390/books978-3-03921-541-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.

Graphene and Other 2D Layered Nanomaterial-Based Films: Synthesis, Properties and Applications

Authors: ---
ISBN: 9783039219025 / 9783039219032 Year: Pages: 138 DOI: 10.3390/books978-3-03921-903-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Organic Chemistry
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Listing 1 - 8 of 8
Sort by
Narrow your search