Search results: Found 4

Listing 1 - 4 of 4
Sort by
Plasticity in Multiple Sclerosis: From Molecular to System Level, from Adaptation to Maladaptation

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197644 Year: Pages: 72 DOI: 10.3389/978-2-88919-764-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

This research topic aims at providing a state of the art update on neuroplasticity in humans with multiple sclerosis. It summarizes advances in plasticity research as achieved by a variety of techniques, in the motor as well as visual and cognitive domain. We are confident that this collection of articles broadens the view across systems and techniques and widens our understanding of this exciting field of research.

Manipulative approaches to human brain dynamics

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194797 Year: Pages: 246 DOI: 10.3389/978-2-88919-479-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:33
License:

Loading...
Export citation

Choose an application

Abstract

In this EBook, we highlight how newly emerging techniques for non-invasive manipulation of the human brain, combined with simultaneous recordings of neural activity, contribute to the understanding of brain functions and neural dynamics in humans. A growing body of evidence indicates that the neural dynamics (e.g., oscillations, synchrony) are important in mediating information processing and networking for various functions in the human brain. Most of previous studies on human brain dynamics, however, show correlative relationships between brain functions and patterns of neural dynamics measured by imaging methods such as electroencephalography (EEG), magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In contrast, manipulative approaches by non-invasive brain stimulation (NIBS) have been developed and extensively used. These approaches include transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) such as transcranial direct current stimulation (tDCS), alternating current stimulation (tACS), and random noise stimulation (tRNS), which can directly manipulate neural dynamics in the intact human brain. Although the neural-correlate approach is a strong tool, we think that manipulative approaches have far greater potential to show causal roles of neural dynamics in human brain functions. There have been technical challenges with using manipulative methods together with imaging methods. However, thanks to recent technical developments, it has become possible to use combined methods such as TMS–EEG coregistration. We can now directly measure and manipulate neural dynamics and analyze functional consequences to show causal roles of neural dynamics in various brain functions. Moreover, these combined methods can probe brain excitability, plasticity and cortical networking associated with information processing in the intact human brain. The contributors to this EBook have succeeded in showcasing cutting-edge studies and demonstrate the huge impact of their approaches on many areas in human neuroscience and clinical applications.

Mind over brain, brain over mind: cognitive causes and consequences of controlling brain activity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194889 Year: Pages: 134 DOI: 10.3389/978-2-88919-488-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

This Research Topic combines articles aiming to gain a better understanding on different factors that determine whether people are successful or not in controlling computerized devices with brain signals. Since decades, technological advancements in neuroscience allow the interpretation of brain signals and their translation into control messages (Brain-computer interface (BCI)). Moreover, the control of brain signals can be used to induce changes in cognition and behavior (Neurofeedback (NF)). However, the break-through of this technology for the broad population in real-world applications has not yet arrived. Various factors have been related to the individual success in controlling computerized devices with brain signals, but to date, no general theoretical framework is available. In this Research Topic, aspects of the training protocol such as instructions, task and feedback as well as cognitive and psychological traits such as motivation, mood, locus of control and empathy are investigated as determinants of BCI or NF performance. Moreover, the mechanisms and networks involved in gaining and maintaining control over brain activity as well as its prediction are addressed. Finally, as the ultimate goal of this research is to use BCI and NF for communication or control and therapy, respectively, novel applications for individuals with disabilities or disorders are discussed.

The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development

Author:
ISBN: 9783039217021 / 9783039217038 Year: Pages: 188 DOI: 10.3390/books978-3-03921-703-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The prefrontal cortex (PFC) plays a pivotal role in regulating our emotions. The importance of ventromedial regions in emotion regulation, including the ventral sector of the medial PFC, the medial sector of the orbital cortex and subgenual cingulate cortex, have been recognized for a long time. However, it is increasingly apparent that lateral and dorsal regions of the PFC, as well as neighbouring dorsal anterior cingulate cortex, also play a role. Defining the underlying psychological mechanisms by which these functionally distinct regions modulate emotions and the nature and extent of their interactions is a critical step towards better stratification of the symptoms of mood and anxiety disorders. It is also important to extend our understanding of these prefrontal circuits in development. Specifically, it is important to determine whether they exhibit differential sensitivity to perturbations by known risk factors such as stress and inflammation at distinct developmental epochs. This Special Issue brings together the most recent research in humans and other animals that addresses these important issues, and in doing so, highlights the value of the translational approach.

Listing 1 - 4 of 4
Sort by
Narrow your search