Search results: Found 2

Listing 1 - 2 of 2
Sort by
Abiotic Stress Effects on Performance of Horticultural Crops

Authors: ---
ISBN: 9783039217502 / 9783039217519 Year: Volume: 1 Pages: 126 DOI: 10.3390/books978-3-03921-751-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2019-11-05 10:43:33
License:

Loading...
Export citation

Choose an application

Abstract

Horticultural crop yield and quality depend on genotype, environmental conditions, and production management. In particular, adverse environmental conditions may greatly affect crop performance, reducing crop yield by 50%–70%. Abiotic stresses such as cold, heat, drought, flooding, salinity, nutrient deficiency, and ultraviolet radiation affect multiple physiological and biochemical mechanisms in plants as they attempt to cope with the stress conditions. However, different crop species can have different sensitivities or tolerances to specific abiotic stresses. Tolerant plants may activate different strategies to adapt to or avoid the negative effect of abiotic stresses. At the physiological level, photosynthetic activity and light-use efficiency of plants may be modulated to enhance tolerance against the stress. At the biochemical level, several antioxidant systems may be activated, and many enzymes may produce stress-related metabolites to help avoid cellular damage, including compounds such as proline, glycine betaine, and amino acids. Within each crop species there is a wide variability of tolerance to abiotic stresses, and some wild relatives may carry useful traits for enhancing the tolerance to abiotic stresses in their progeny through either traditional or biotechnological breeding. The research papers and reviews presented in this book provide an update of the scientific knowledge of crop interactions with abiotic stresses.

Physiological Responses to Abiotic and Biotic Stress in Forest Trees

Authors: ---
ISBN: 9783039215140 / 9783039215157 Year: Pages: 294 DOI: 10.3390/books978-3-03921-515-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Keywords

drought --- mid-term --- non-structural carbohydrate --- soluble sugar --- starch --- Pinus massoniana --- salinity --- Carpinus betulus --- morphological indices --- gas exchange --- osmotic adjustment substances --- antioxidant enzyme activity --- ion relationships --- Populus simonii Carr. (poplar) --- intrinsic water-use efficiency --- tree rings --- basal area increment --- long-term drought --- hydrophilic polymers --- Stockosorb --- Luquasorb --- Konjac glucomannan --- photosynthesis --- ion relation --- Fagus sylvatica L. --- Abies alba Mill. --- N nutrition --- mixed stands --- pure stands --- soil N --- water relations --- 24-epiBL application --- salt stress --- ion contents --- chloroplast ultrastructure --- photosynthesis --- Robinia pseudoacacia L. --- elevation gradient --- forest type --- growth --- leaf properties --- Pinus koraiensis Sieb. et Zucc. --- Heterobasidion parviporum --- Heterobasidion annosum --- Norway spruce --- disturbance --- water availability --- pathogen --- infection --- Carpinus turczaninowii --- salinity treatments --- ecophysiology --- photosynthetic responses --- organic osmolytes --- ion homeostasis --- antioxidant enzymes --- glutaredoxin --- subcellular localization --- expression --- tapping panel dryness --- defense response --- rubber tree --- Ca2+ signal --- drought stress --- living cell --- Moso Bamboo (Phyllostachys edulis) --- plasma membrane Ca2+ channels --- signal network --- Aleppo pine --- Greece --- photosynthesis --- water potential --- ?13C --- sap flow --- canopy conductance --- climate --- molecular cloning --- functional analysis --- TCP --- DELLA --- GA-signaling pathway --- Fraxinus mandshurica Rupr. --- wood formation --- abiotic stress --- nutrition --- gene regulation --- tree --- bamboo forest --- cold stress --- physiological response --- silicon fertilization --- plant tolerance --- reactive oxygen species --- antioxidant activity --- proline --- Populus euphratica --- salt stress --- salicylic acid --- malondialdehyde --- differentially expressed genes --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2019 (2)