Search results: Found 16

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Resonant Behaviour of Pulse Generators for the Efficient Drive of Optical Radiation Sources Based on Dielectric Barrier Discharges

Author:
ISBN: 9783731500834 Year: Pages: 212 p. DOI: 10.5445/KSP/1000036098 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

Dielectric barrier discharge (DBD) excimer lamps emit vacuum-UV optical radiation. This work presents novel methods for efficiently operating DBDs with short, high-voltage pulses. Transformer-less systems utilising SiC power semiconductor switches are presented. Pulse frequencies of up to 3.1 MHz and peak inverter efficiencies of 92 % were achieved. The work encloses both mathematical backgrounds of pulsed resonant circuits and practical implementation of low-inductive power stages.

Neuromorphic Engineering Systems and Applications

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194544 Year: Pages: 182 DOI: 10.3389/978-2-88919-454-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.

Neues Verfahren zur invarianten Objekterkennung und -lokalisierung auf der Basis lokaler Merkmale

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Informatik / Automatisierungstechnik an der Universität Karlsruhe (TH) ISSN: 16145267 ISBN: 9783866441668 Year: Volume: 18 Pages: V, 139 p. DOI: 10.5445/KSP/1000006696 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

Diese Arbeit befasst sich mit robuster Objekterkennung auf der Basis lokaler Merkmale. Es wird eine allgemeine Methodik zur einfachen Auswertung von Objekttransformationen vorgestellt. Mittels dieser Methodik wird ein Verfahren zur rotations-, skalierungsund verschiebungsinvarianten Objekterkennung auf der Basis modifizierter Gaborfilter entwickelt. Die Flexibilität und Robustheit des entwickelten Verfahrens wird anhand dreier unterschiedlicher Beispielanwendungen nachgewiesen.

Fahrstrategien zur Unfallvermeidung im Straßenverkehr für Einzel- und Mehrobjektszenarien

Author:
Book Series: Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie ISSN: 16134214 ISBN: 9783731501985 Year: Volume: 30 Pages: XVI, 139 p. DOI: 10.5445/KSP/1000039757 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this work is the determination of collision-free driving strategies. Firstly, the last possible maneuver is derived for a single object on the basis of reachable existence circles and is extended to a complete evasive maneuvre. Subsequently, the consideration is extended onto multiple objects. By the use of existence regions and kinematic configurations collision-free trajectories are determined and evaluated.

Image Processing Using FPGAs

Author:
ISBN: 9783038979180 / 9783038979197 Year: Pages: 204 DOI: 10.3390/books978-3-03897-919-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs.

Nanoelectronic Materials, Devices and Modeling

Authors: ---
ISBN: 9783039212255 / 9783039212262 Year: Pages: 242 DOI: 10.3390/books978-3-03921-226-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Keywords

UAV --- vision localization --- hierarchical --- landing --- information integration --- memristor --- synaptic device --- spike-timing-dependent plasticity --- neuromorphic computation --- memristive device --- ZnO films --- conditioned reflex --- quantum dot --- sample grating --- cross-gain modulation --- bistability --- distributed Bragg --- semiconductor optical amplifier --- topological insulator --- field-effect transistor --- nanostructure synthesis --- optoelectronic devices --- topological magnetoelectric effect --- drain-induced barrier lowering (DIBL) --- gate-induced drain leakage (GIDL) --- silicon on insulator (SOI) --- graphene --- supercapacitor --- energy storage --- ionic liquid --- UV irradiation --- luminescent centres --- bismuth ions --- two-photon process --- oscillatory neural networks --- pattern recognition --- higher order synchronization --- thermal coupling --- vanadium dioxide --- band-to-band tunneling --- L-shaped tunnel field-effect-transistor --- double-gate tunnel field-effect-transistor --- corner-effect --- AlGaN/GaN --- high-electron mobility transistor (HEMTs) --- p-GaN --- enhancement-mode --- 2DEG density --- InAlN/GaN heterostructure --- polarization effect --- quantum mechanical --- gallium nitride --- MISHEMT --- dielectric layer --- interface traps --- current collapse --- PECVD --- gate-induced drain leakage (GIDL) --- drain-induced barrier lowering (DIBL) --- recessed channel array transistor (RCAT) --- on-current (Ion) --- off-current (Ioff) --- subthreshold slope (SS) --- threshold voltage (VTH) --- saddle FinFET (S-FinFET) --- potential drop width (PDW) --- shallow trench isolation (STI) --- source/drain (S/D) --- conductivity --- 2D material --- Green’s function --- reflection transmision method --- variational form --- dual-switching transistor --- third harmonic tuning --- low voltage --- high efficiency --- CMOS power amplifier IC --- insulator–metal transition (IMT) --- charge injection --- Mott transition --- conductive atomic force microscopy (cAFM) --- gate field effect --- atomic layer deposition (ALD) --- zinc oxide --- silicon --- ZnO/Si --- electron affinity --- bandgap tuning --- conduction band offset --- heterojunction --- solar cells --- PC1D --- vertical field-effect transistor (VFET) --- back current blocking layer (BCBL) --- gallium nitride (GaN) --- normally off power devices --- n/a

Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 / 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Wide Bandgap Semiconductor Based Micro/Nano Devices

Author:
ISBN: 9783038978428 / 9783038978435 Year: Pages: 138 DOI: 10.3390/books978-3-03897-843-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Keywords

optical band gap --- tungsten trioxide film --- annealing temperature --- electrochromism --- AlGaN/GaN HEMT --- DIBL effect --- channel length modulation --- power amplifier --- W band --- high electron mobility transistors --- high electron mobility transistor (HEMT) --- AlGaN/GaN --- ohmic contact --- regrown contact --- ammonothermal GaN --- power amplifier --- I–V kink effect --- AlGaN/GaN HEMT --- large signal performance --- 4H-SiC --- MESFET --- ultrahigh upper gate height --- power added efficiency --- harsh environment --- space application --- 1T DRAM --- wide-bandgap semiconductor --- high-temperature operation --- TCAD --- amorphous InGaZnO (a-IGZO) --- thin-film transistor (TFT) --- positive gate bias stress (PGBS) --- passivation layer --- characteristic length --- edge termination --- silicon carbide (SiC) --- junction termination extension (JTE) --- breakdown voltage (BV) --- Ku-band --- GaN high electron mobility transistor (HEMT) --- power amplifier --- asymmetric power combining --- amplitude balance --- phase balance --- micron-sized patterned sapphire substrate --- growth of GaN --- sidewall GaN --- flip-chip light-emitting diodes --- distributed Bragg reflector --- light output power --- external quantum efficiency --- threshold voltage (Vth) stability --- gallium nitride (GaN) --- high electron mobility transistors (HEMTs) --- analytical model --- high-temperature operation --- T-anode --- GaN --- buffer layer --- anode field plate (AFP) --- cathode field plate (CFP) --- n/a

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Authors: ---
ISBN: 9783039214815 / 9783039214822 Year: Pages: 548 DOI: 10.3390/books978-3-03921-482-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Keywords

DC–DC conversion --- interleaved buck --- parasitic switching states --- three-level converter --- simplified PWM strategy --- redundant switching combination --- voltage balance control --- modular multilevel converter --- IGBT short-circuit --- fault detection --- fault location --- Differential Comparison Low-Voltage Detection Method (DCLVDM) --- Continuous Wavelet Transform --- digital controller --- digital signal processors (DSP) --- modular multilevel converters (MMC) --- multi-terminal DC network (MTDC) --- MMC-MTDC --- hybrid modulated model predictive control --- optimal output voltage level --- multi-point DC control --- neutral-point-clamped (NPC) inverter --- dc-link capacitor voltage balance --- offset voltage injection --- harmonic component --- modular multilevel converters --- capacitor voltage balancing --- sorting networks --- field-programmable gate array --- low-harmonic DC ice-melting device --- transmission line --- voltage fluctuation --- harmonic --- dynamic reactive --- substation’s voltage stability --- alternating current (AC) motor drive --- current estimation --- current reconstruction method --- current unmeasurable areas --- total harmonic distortion (THD) --- single shunt resistor --- space vector pulse width modulation (SVPWM) --- shift method --- minimum voltage injection (MVI) method --- three-level neutral point clamped inverter (NPCI) --- three-level boost --- automatic current balance --- three-loop --- voltage imbalance --- DC-link voltage balancing --- field-oriented control --- field-programmable gate array --- multilevel active-clamped converter --- motor drive --- buck-chopper --- PV-simulator --- T-type converter --- real time simulator --- three-level boost DC-DC converter --- small signal modeling --- voltage balance control --- multilevel converter --- selected harmonic elimination --- genetic algorithm --- imperialist competitive algorithm --- voltage ripple --- voltage source inverter --- three-phase inverter --- DC-link capacitor design --- Cascaded H-bridge multilevel inverter (CHBMI) --- field-programmable gate array --- total harmonic distortion (THD) --- modulation techniques --- multilevel converter --- electric vehicle --- on-board battery charger --- power factor correction --- power quality --- smart grid --- model predictive control --- single-phase three-level NPC converter --- commutation --- modular multilevel converter (MMC) --- Sub-module (SM) fault --- fault-tolerant control --- Phase Disposition PWM --- finite control set model predictive control --- T-type inverter --- computational cost --- LC filter --- DC-link capacitor voltage balancing --- multilevel converter --- DC side fault blocking --- predictive control --- battery energy storage system (BESS) --- modular multilevel converter (MMC) --- state-of-charge (SOC) balancing control --- tolerance for battery power unbalance --- model predictive control (MPC) --- computational burden --- reverse prediction --- modular multilevel converter (MMC) --- multilevel inverters --- total harmonic distortion --- level-shifted PWM --- phase-shifted PWM --- electrical drives --- energy saving --- multilevel power converters --- permanent magnet synchronous generator --- open-end winding configuration --- voltage balancing --- power factor --- improved PQ algorithm --- power flow analysis --- three-phase to single-phase cascaded converter --- ACTPSS --- NPC/H Bridge --- five-level --- Balance of capacitor voltage --- Suppression of CMV --- SVPWM --- multilevel converter --- multi-motor drive --- harmonic mitigation --- active filter --- open end winding motor --- high efficiency drive --- high reliability applications

Open-Source Electronics Platforms

Author:
ISBN: 9783038979722 / 9783038979739 Year: Pages: 262 DOI: 10.3390/books978-3-03897-973-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.

Keywords

human-computer interface (HCI) --- electrooculogram (EOG) --- electromyogram (EMG) --- modified sliding window algorithm --- piecewise linear approximation (PLA) --- support vector regression --- eye tracking --- blockchain --- ontology --- context --- cyber-physical systems --- robotics --- interaction --- coalition --- individual management of livestock --- momentum data sensing --- remote sensing platform --- sensor networks --- technology convergence --- industry 4.0 --- distributed measurement systems --- automation networks --- node-RED --- cloud computing --- OPC UA --- hardware trojan taxonomy --- thermal imaging --- side channel analysis --- infrared --- FPGA --- Internet of Things --- wireless sensor networks --- Cloud of Things --- virtual sensor --- sensor detection --- smart cities --- Internet of Things --- Raspberry Pi --- BeagleBoard --- Arduino --- Internet of Things --- open hardware --- smart farming --- teaching robotics --- science teaching --- STEM --- robotic tool --- Python --- Raspberry Pi --- PiCamera --- vision system --- service learning --- robotics --- open platform --- automated vehicle --- EPICS --- open-source platform --- visual algorithms --- digital signal controllers --- embedded systems education --- dsPIC --- Java --- smart converter --- maximum power point tracking (MPPT) --- photovoltaic (PV) system --- Field Programmable Gate Array (FPGA) --- Digital Signal Processor (DSP) --- interleaved --- DC/DC converter --- distributed energy resource --- n/a

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Narrow your search