Search results: Found 10

Listing 1 - 10 of 10
Sort by
Artificial Societies

Authors: ---
ISBN: 9780203993699 9781857283051 9781138963924 9781135367312 9781135367305 9781135367268 Year: DOI: 10.4324/9780203993699 Language: English
Publisher: Taylor & Francis
Subject: Sociology
Added to DOAB on : 2019-11-08 11:21:30
License:

Loading...
Export citation

Choose an application

Abstract

An exploration of the implications of developments in artificial intelligence for social scientific research, which builds on the theoretical and methodological insights provided by "Simulating societies".; This book is intended for worldwide library market for social science subjects such as sociology, political science, geography, archaeology/anthropology, and significant appeal within computer science, particularly artificial intelligence. Also personal reference for researchers.

Permanente Optimierung dynamischer Probleme der Fertigungssteuerung unter Einbeziehung von Benutzerinteraktionen

Author:
Book Series: Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ISSN: 18636489 ISBN: 9783731504269 Year: Volume: 21 Pages: XXIII, 262 p. DOI: 10.5445/KSP/1000048541 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Computer Science
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Despite huge research efforts only simple scheduling algorithms assist humans in their daily work. This work presents a comprehensive concept for a permanent running algorithmic scheduler intelligently collaborating with the humans. The developed approaches provide prompt reactions on manufacturing events and intelligent rescheduling based on analysis of the optimization potential and demand. The practicability of the presented approaches is proved by dynamic simulations with real data.

Applications of Computational Intelligence to Power Systems

Author:
ISBN: 9783039217601/9783039217618 Year: Pages: 116 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2019-11-08 11:31:56
License:

Loading...
Export citation

Choose an application

Abstract

Electric power systems around the world are changing in terms of structure, operation, management and ownership due to technical, financial, and ideological reasons. Power systems keep on expanding in terms of geographical areas, asset additions, and the penetration of new technologies in generation, transmission, and distribution. The conventional methods for solving the power system design, planning, operation, and control problems have been extensively used for different applications, but these methods suffer from several difficulties, thus providing suboptimal solutions. Computationally intelligent methods can offer better solutions for several conditions and are being widely applied in electrical engineering applications. This Special Issue represents a thorough treatment of computational intelligence from an electrical power system engineer’s perspective. Thorough, well-organised, and up-to-date, it examines in detail some of the important aspects of this very exciting and rapidly emerging technology, including machine learning, particle swarm optimization, genetic algorithms, and deep learning systems. Written in a concise and flowing manner by experts in the area of electrical power systems who have experience in the application of computational intelligence for solving many complex and difficult power system problems, this Special Issue is ideal for professional engineers and postgraduate students entering this exciting field.

Optimization Methods Applied to Power Systems: Volume 1

Authors: ---
ISBN: 9783039211302 / 9783039211319 Year: Pages: 382 DOI: 10.3390/books978-3-03921-131-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Optimization Methods Applied to Power Systems: Volume 2

Authors: ---
ISBN: 9783039211562 / 9783039211579 Year: Pages: 306 DOI: 10.3390/books978-3-03921-157-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Swarm Robotics

Author:
ISBN: 9783038979227 / 9783038979234 Year: Pages: 310 DOI: 10.3390/books978-3-03897-923-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties:

Keywords

3D model identification --- shape normalization --- weighted implicit shape representation --- panoramic view --- scale-invariant feature transform --- optimization --- meta-heuristic --- parallel technique --- Swarm intelligence algorithm --- artificial flora (AF) algorithm --- bionic intelligent algorithm --- particle swarm optimization --- artificial bee colony algorithm --- swarm robotics --- search --- surveillance --- behaviors --- patterns --- comparison --- swarm behavior --- Swarm Chemistry --- self-organization --- asymmetrical interaction --- genetic algorithm --- cooperative target hunting --- multi-AUV --- improved potential field --- surface-water environment --- signal source localization --- multi-robot system --- event-triggered communication --- consensus control --- time-difference-of-arrival (TDOA) --- Cramer–Rao low bound (CRLB) --- optimal configuration --- UAV swarms --- path optimization --- multiple robots --- formation --- sliding mode controller --- nonlinear disturbance observer --- system stability --- formation control --- virtual structure --- formation reconfiguration --- multi-agents --- robotics --- unmanned aerial vehicle --- swarm intelligence --- particle swarm optimization --- search algorithm --- underwater environment --- sensor deployment --- event-driven coverage --- fish swarm optimization --- congestion control --- modular robots --- self-assembly robots --- environmental perception --- target recognition --- autonomous docking --- formation control --- virtual linkage --- virtual structure --- formation reconfiguration --- mobile robots --- robotics --- swarm robotics --- formation control --- coordinate motion --- obstacle avoidance --- n/a

Multi-Agent Systems

Authors: --- --- ---
ISBN: 9783038979241 / 9783038979258 Year: Pages: 392 DOI: 10.3390/books978-3-03897-925-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019.

Keywords

scaled consensus --- delay --- formation tracking --- multi-agent system --- collision avoidance --- multiple passive agents --- Mobile Robot Navigation --- pedestrian environment --- kinodynamic planning --- velocity obstacle --- agent-based modeling --- complex network --- multi-agent system --- network management --- [-5]agent-based simulation --- agent-based social simulation --- multi-agent system --- agent-oriented software engineering --- sociogram --- agent technology --- organizational model --- agent behavior --- travel behavior --- commuting --- carpooling --- online double auction --- mechanism design --- perishable goods --- multi-agent simulation --- bike sharing systems (BSS) --- regression models --- open data --- data visualization --- multi agent systems --- organizations and institutions --- socio-technical systems --- multi-agent systems --- electric vehicles --- charging stations --- genetic algorithm --- multi-agent system --- agent-based simulation --- 3D representation --- human-machine interaction --- ambient intelligence --- user interaction levels --- intelligent agents --- intelligent hybrid systems --- type-2 fuzzy inference system --- methodologies for agent-based systems --- organizations and institutions --- socio–technical systems --- computational accountability --- social commitments --- agent-based programming --- multi-agent system --- BDI agents --- model-driven development --- agent development methodology --- semantic web service --- ontology --- SEA_ML --- electronic bartering system --- ambient intelligence --- cognitive disabilities --- mobile communication --- orientation --- person tracking --- trajectory mining --- agreement technologies --- coordination models --- multiagent systems --- smart cities --- surface vehicle --- underactuated vehicle --- RBFNNs --- directed graph --- coordinated control --- Behavior Trees (BTs) --- Genetic Programming (GP) --- autonomous agents --- behavior modeling --- tree mining --- agent development framework --- mobile device agent --- linked data --- semantic web --- multi-agent systems --- agent-based modelling --- agent-based simulation --- agent-oriented technologies --- coordination --- Artificial Intelligence --- computer science --- multi-agent systems --- agent methodologies --- agent-based simulation --- ambient intelligence --- smart cities

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Entropy Applications in Environmental and Water Engineering

Authors: --- ---
ISBN: 9783038972228 Year: Pages: 512 DOI: 10.3390/books978-3-03897-223-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

Keywords

complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering

Adaptive Catchment Management and Reservoir Operation

Authors: --- ---
ISBN: 9783038977384 / 9783038977391 Year: Pages: 498 DOI: 10.3390/books978-3-03897-739-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.

Keywords

Siemianówka --- hydrology --- Narew River --- dam --- reservoir --- discharge --- flow regime --- reservoir flushing --- numerical simulation --- flushing efficiency --- Kurobe River --- two-dimensional bed evolution model --- sediment flushing of empty storage --- shaft spillway pipe --- sediment flushing efficiency --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- Jingjiang River Reach --- Yangtze River --- CO2 --- reservoirs --- general regression neural network --- back propagation neural network --- climate change --- CMIP3 --- CMIP5 --- downscaling --- runoff response --- SWAT model --- stochastic linear programming --- Markov chain --- reliability --- vulnerability --- reservoir operation --- stochastic dynamic programming --- protection zone --- nutrient uptake --- NPP --- South-to-North Water Transfer Project --- Miyun Reservoir --- reservoir operation --- optimization --- SWAT --- HEC-ResPRM --- climate change --- CORDEX-Africa --- Tekeze basin --- long distance water diversion --- inverted siphon --- sensitivity analysis --- integrated supply system modeling --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- the Jingjiang River Reach --- the Yangtze River --- reservoir operation --- multi-stage stochastic optimization --- TB-MPC --- flood control --- real-time control --- energy --- hydropower stations --- differential evolution algorithm --- optimal scheduling --- ?-constrained method --- drinking water resources --- water environmental capacity (WEC) --- Environmental Fluid Dynamics Code (EFDC) model --- the Huangshi Reservoir --- seasonal rainfall --- upper Chao Phraya River Basin --- El Niño/Southern Oscillation --- Indian Monsoon --- sea surface temperatures --- reverse regulation --- coupling model --- aftereffect --- accompanying progressive optimality algorithm --- Dokan Dam --- runoff --- sediment load --- SWAT --- natural flow regime --- multi-objective model --- uncertainty --- genetic algorithm --- land and water resources --- system dynamics --- modeling --- scenario analysis --- Heilongjiang --- tropical reservoir --- heating impact --- Langcang-Mekong River --- Kappa distribution --- parameter relation --- partial gauged basin --- power function --- ratio curve --- ungauged basin --- reservoir operation --- integrated surface water-groundwater model --- Heihe River Basin --- environmental flow --- irrigation --- design and operation of the multipurpose reservoir --- water deficit --- reservoir simulation model --- climate change --- multi-objective optimization NSGA II --- resilience and robustness --- costs and benefits --- water energy --- multi-agent of river basin --- game theory --- water resources allocation --- optimal flood control operation --- cascade reservoirs --- dynamic programming with progressive optimality algorithm (DP-POA) --- the upper Yangtze River Basin --- parameterization --- simulation --- optimization --- direct policy search --- hedging policy --- shortage ratio: Vulnerability --- NSGA-II --- lentic habitats --- bitterling --- mussel --- floodplain vertical shape index --- sediment management --- adaptive management --- catchment modelling --- integrated management --- reservoir operation

Listing 1 - 10 of 10
Sort by
Narrow your search