Search results: Found 2

Listing 1 - 2 of 2
Sort by
Agrobacterium biology and its application to transgenic plant production

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195749 Year: Pages: 165 DOI: 10.3389/978-2-88919-574-9 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General) --- Botany
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

The broad host range pathogenic bacterium Agrobacterium tumefaciens has been widely studied as a model system to understand horizontal gene flow, secretion of effector proteins into host cells, and plant-pathogen interactions. Agrobacterium-mediated plant transformation also is the major method for generating transgenic plants for research and biotechnology purposes. Agrobacterium species have the natural ability to conduct interkingdom genetic transfer from bacteria to eukaryotes, including most plant species, yeast, fungi, and even animal cells. In nature, A. tumefaciens causes crown gall disease resulting from expression in plants of auxin and cytokinin biosynthesis genes encoded by the transferred (T-) DNA. Gene transfer from A. tumefaciens to host cells requires virulence (vir) genes that reside on the resident tumor-inducing (Ti) plasmid. In addition to T-DNA, several Virulence (Vir) effector proteins are also translocated to host cells through a bacterial type IV secretion system. These proteins aid in T-DNA trafficking through the host cell cytoplasm, nuclear targeting, and T-DNA integration. Genes within native T-DNAs can be replaced by any gene of interest, making Agrobacterium species important tools for plant research and genetic engineering. In this research topic, we provided updated information on several important areas of Agrobacterium biology and its use for biotechnology purposes.

Plant Development and Organogenesis: From Basic Principles to Applied Research

Author:
ISBN: 9783039281268 9783039281275 Year: Pages: 246 DOI: 10.3390/books978-3-03928-127-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Plant Sciences --- Biology --- Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.

Keywords

wheat-rye hybrids --- genes of reproductive isolation --- stem apical meristem --- molecular marker --- Rht18 --- reduced height --- wheat --- semi-dwarf --- linkage map --- CLE --- CLV --- WUS --- stem cells --- meristem --- SAM --- signaling --- locule --- Arabidopsis --- auxin --- HD-Zip transcription factors --- light environment --- photoreceptors --- wounding --- root plasticity --- hydrogen peroxide --- protoxylem --- plant development and organogenesis --- proline biosynthesis --- RolD --- rol genes --- Vasculature --- Organogenesis --- Development --- Brassicaceae --- Asteraceae --- flowering time --- photoperiod --- vernalization --- ambient temperature --- gibberellins --- age --- plant breeding --- grass --- ligule --- organogenesis --- boundaries --- shoot meristem --- morphogenesis --- molecular regulation --- cell wall --- cytoskeleton --- Arabidopsis --- root --- stem cells --- root development --- differentiation --- ground tissue --- radial patterning --- proximodistal patterning --- Plant in vitro cultures --- somatic cell selection --- hairy roots --- rol genes --- Agrobacterium rhizogenes --- genetic transformation --- recalcitrant species --- KNOX transcription factors --- plant development --- tree phase change --- transformation --- morphogenic --- embryogenesis --- meristem formation --- organogenesis --- GRETCHEN HAGEN 3 (GH3) IAA-amido synthase group II --- root apical meristem --- auxin --- cytokinin --- lateral root cap --- auxin minimum --- auxin conjugation --- plant development and organogenesis --- translational research --- crop productivity --- genetic improvement --- Arabidopsis thaliana --- regulatory networks --- phytohormones --- rol genes --- plant cell and tissue culture

Listing 1 - 2 of 2
Sort by
Narrow your search