Search results: Found 4

Listing 1 - 4 of 4
Sort by
The Foundation of Precision Medicine: Integration of Electronic Health Records with Nenomics Through Basic, Clinical, and Translational Research

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198726 Year: Pages: 194 DOI: 10.3389/978-2-88919-872-6 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

This eBook contains the 19 articles that were part of a Special Topic in Frontiers in Genetics entitled “Genetics Research in Electronic Health Records Linked to DNA Biobanks”. The Special Issue was published on-line in 2014-2015 and contained papers representing the diverse research ongoing in the integration of electronic health records (EHR) with genomics through basic, clinical, and translational research. We have divided the eBook into four Chapters. Chapter 1 describes the Electronic Medical Records and Genomics (eMERGE) network and its contri-bution to genomics. It highlights methodological questions related to large data sets such as imputation and population stratification. Chapter 2 describes the results of genetic studies on different diseases for which all the phenotypic information was extracted from the EHR with highly specific ePhenotyping algorithms. Chapter 3 focuses on more complex analyses of the genome including copy number variants (CNV), pleiotropy com-bined with phenome-wide association studies (PheWAS), and epistasis (gene-gene interactions). Chapter 4 discusses the use of genetic data together with EHR-derived clinical data in clinical settings, and how to return genetic results to patients and providers. It also contains a comprehensive review on genetic risk scores. We have included mostly Original Research Articles in the eBook, but also Reviews and Methods papers on the relevant topics of analyzing and integrating genomic data. The release of this eBook is timely, since several countries are launching Precision Medicine initiatives. Precision Medicine is a new concept in patient care taking into account individual variability in genetic, environmental and lifestyle factors, when treating diseases or trying to prevent them from developing. It has become an important focus for biomedical, clinical and translational informatics. The papers presented in this eBook are well positioned to educate the readers about Precision Medicine and to demonstrate the potential study designs, methods, strategies, and applications where this type of research can be performed successfully. The ultimate goal is to improve diagnostics and provide better, more targeted care to the patient.

Fatty Acids and Cardiometabolic Health

Authors: ---
ISBN: 9783038978909 / 9783038978916 Year: Pages: 202 DOI: 10.3390/books978-3-03897-891-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The impact of fat intake on hypercholesterolemia and related atherosclerotic cardiovascular diseases has been studied for decades. However, the current evidence base suggests that fatty acids also influences cardiometabolic diseases through other mechanisms including effects on glucose metabolism, body fat distribution, blood pressure, inflammation, and heart rate. Furthermore, studies evaluating single fatty acids have challenged the simplistic view of shared health effects within fatty acid groups categorized by degree of saturation. In addition, investigations of endogenous fatty acid metabolism, including genetic studies of fatty acid metabolizing enzymes, and the identification of novel metabolically derived fatty acids have further increased the complexity of fatty acids’ health impacts. This Special Issue aims to include original research and up-to-date reviews on genetic and dietary modulation of fatty acids, and the role and function of dietary and metabolically derived fatty acids in cardiometabolic health.

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 / 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 / 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search