Search results: Found 3

Listing 1 - 3 of 3
Sort by
Hormones, Metabolism and the Benefits of Exercise

Author:
Book Series: Research and Perspectives in Endocrine Interactions ISSN: 1861-2253 ISBN: 9783319727899 9783319727905 Year: Pages: 102 DOI: https://doi.org/10.1007/978-3-319-72790-5 Language: English
Publisher: Springer Grant: Fondation Ipsen
Subject: Internal medicine
Added to DOAB on : 2018-06-29 10:36:57
License:

Loading...
Export citation

Choose an application

Abstract

The world is faced with an epidemic of metabolic diseases such as obesity and type 2 diabetes. This is due to changes in dietary habits and the decrease in physical activity. Exercise is usually part of the prescription, the first line of defense, to prevent or treat metabolic disorders. However, we are still learning how and why exercise provides metabolic benefits in human health. This open access volume focuses on the cellular and molecular pathways that link exercise, muscle biology, hormones and metabolism. This will include novel “myokines” that might act as new therapeutic agents in the future.

All 3 Types of Glial Cells Are Important for Memory Formation

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450251 Year: Pages: 150 DOI: 10.3389/978-2-88945-025-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

The vertebrate brain contains neurons and 3 classical types of glia cells, astrocytes, oligodendrocytes and microglia. Astrocytes and microglia have mainly been studied in gray matter, whereas oligodendrocytes myelinate white matter tracts. Until recently microglial effects were considered mainly during pathological conditions, but is now known that microglia plays important roles also in normal brain function. All these 3 glial cell types and their collaboration with neurons are important for learning. The concept that glia cells are important for cognitive function is not new. A glial-neuronal theory of brain function was proposed by Galambos in 1961. Hyden and Egyhazi demonstrated glial RNA changes in microdissected glia cells during learning in rats in 1963, and astrocytic and oligodendrocytic involvement of K+-mediated effects of learning has been suggested and/or demonstrated from the 1960’s and onwards as recently reviewed by Hertz and Chen (Neuroscience and Biobehavioural Reviews, 2016). In 1969 van den Berg et al. showed compartmentation of glutamate in brain and thus of production of the neurotransmitters glutamate and GABA, which are essential for learning. That glutamate is synthesized in astrocytes because they in contrast to neurons express the enzyme pyruvate carboxylase was demonstrated 10-15 years later by Yu et al. in cultured astrocytes and Shank et al. in intact brain tissue. However, the present e-book focuses on more recent developments. Most information is available about astrocytic roles in learning. The importance of astrocytes in the tripartite synapse and of microglia in the tetrapartite synapse is illustrated in the front-page figure, which emphasizes the role of gliotransmitters and of Ca2+ transport through gap junctions, coupling astrocytes into a functional syncytium. Astrocytes are important for establishments of brain rhythms, which may differ in different cognitive tasks, and although the exact reason why knock-out of the astrocytic water channel AQP4 impairs memory remains to be established, several possibilities are discussed. The importance of the two astrocyte specific processes glutamate and glutamine formation and glycogenolysis is discussed in considerable detail. Glycogenolysis is important not only for astrocytic processes involved in learning, but also for those in neurons because glycolytically derived lactate has signaling functions in the extracellular space and may be accumulated in minute quantities into very specific and small neuronal structures. Some neurotransmitters stimulating glycogenolysis are also involved in psychiatric disease. Noradrenaline, released from locus coeruleus exerts direct effects on both astrocytes and neurons and in addition promotes secretion of corticotropin-releasing hormone and adrenocorticotrophic hormone (ACTH) in brain, and of glucocorticoids from the adrenal cortex, all of which are responsible for stress effects on learning. Lead causes memory impairment by inhibition of glutamine formation due to oxidative stress and reduced effectiveness of the glutathione system. The many adverse effects of fetal alcohol exposure on behaviour and learning are caused by a multitude of effects on all three types of glia cells. Traumatic brain injury also exerts multifactorial effects, including microglia/astrocyte-induced secretion of neuroinflammatory molecules and axonal disruption and oligodendrocytic dysfunction. In normal brain oligodendrocytes respond to the depolarization caused by neuronal activity with accelerated conduction velocity and increased compound action potentials which facilitate learning.

AMP-Activated Protein Kinase Signalling

Authors: ---
ISBN: 9783038976622 Year: Pages: 452 DOI: 10.3390/books978-3-03897-663-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.

Keywords

exercise --- glucose uptake --- AMP-activated protein kinase --- TBC1D4 --- AS160 --- AMP-activated protein kinase --- developmental origins of health and disease (DOHaD) --- hypertension --- kidney disease --- nutrient-sensing signals --- oxidative stress --- renin-angiotensin system --- AMPK --- autophagy --- co-expression --- microarrays --- 3T3-L1 --- adipocyte --- differentiation --- AMPK --- tight junctions --- epithelial cells --- ZO-1 --- par complex --- MDCK --- nectin-afadin --- adherent junctions --- TAK1 --- AMPK --- phosphorylation --- AMPK kinase --- endothelial nitric-oxide synthase --- vasodilation --- phenylephrine --- vasoconstriction --- endothelial cells --- ionomycin --- AMPK --- liver --- lipid metabolism --- fatty acid oxidation --- indirect calorimetry --- atrophy --- regrowth --- sirtuin 1 (SIRT1) --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- heat shock protein --- fiber-type --- AMPK --- monocytes --- macrophages --- differentiation --- autophagy --- AML --- MDS --- CML --- CMML --- pregnancy --- catechol-O-methyltransferase --- 2-methoxyestradiol --- preeclampsia --- gestational diabetes mellitus --- AMPK --- IL-1? --- NLRP3 --- nutrition --- dietary fatty acids --- metabolic-inflammation --- nutrigenomics --- AMPK --- LKB1 --- autophagy --- proteasome --- hypertrophy --- atrophy --- skeletal muscle --- AICAR --- mTOR --- protein synthesis --- AMPK --- epigenetics --- chromatin remodeling --- histone modification --- DNA methylation --- medulloblastoma --- sonic hedgehog --- AMPK --- AMP-activated protein kinase (AMPK) --- spermatozoa --- motility --- mitochondria --- membranes --- signaling --- stress --- assisted reproduction techniques --- AMP-activated protein kinase --- epigenetics --- protein acetylation --- KATs --- HDACs --- acetyl-CoA --- NAD+ --- AMP-activated protein kinase --- glycogen --- exercise --- metabolism --- cellular energy sensing --- energy utilization --- liver --- skeletal muscle --- metabolic disease --- glycogen storage disease --- resveratrol --- AMPK --- hepatocyte --- liver --- steatosis --- transporter --- carrier --- pump --- membrane --- energy deficiency --- AMPK --- infection --- mycobacteria --- host defense --- energy metabolism --- AMPK --- activation loop --- AID --- ?-linker --- ?-linker --- CBS --- LKB1 --- CaMKK2 --- ?RIM --- hypothalamus --- adenosine monophosphate-activated protein kinase --- adipose tissue --- food intake --- adaptive thermogenesis --- beiging --- AMPK --- HDAC4/5 --- p70S6K --- MyHC I(?), motor endplate remodeling --- soleus muscle --- mechanical unloading --- hindlimb suspension --- AMPK --- synaptic activation --- PKA --- CREB --- soluble Adenylyl cyclase --- Immediate early genes --- transcription --- AMPK --- autophagy --- metabolism --- mTOR --- ULK --- AMP-activated protein kinase --- protein kinase B --- Akt --- insulin signalling --- A769662 --- endothelial function --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search