Search results: Found 6

Listing 1 - 6 of 6
Sort by
Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 / 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Wine Aging Technologies

Authors: ---
ISBN: 9783038977483 Year: Pages: 120 DOI: 10.3390/books978-3-03897-749-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Wine aging is a desirable and valuable process, commonly used to improve wine quality, and traditionally carried out in oak wooden casks. The correct use of oak barrels and the ever-increasing demand for barrels in the different production areas of the world has led to a constant search for technological alternatives to reproduce the chemical and physical processes undergone by wines during their stay in barrels.The aim of this Special Issue is to publish a compilation of original research and revision works that cover different aspects of the ageing processes of wine in casks and other alternative systems that reproduce, with different technologies, the transformations that take place in the barrel.Important aspects to be addressed are:the type of technological solutions that exist for wine agingthe impact of these new technologies on the final productcomparison of the effect of emerging and traditional technologies on the wine ageddifferentiation of wines undergoing different systems to avoid fraudcharacterization of the new materials used in barrel productionaccelerated aging of wines with wood and oxygen

Silicon-Based Nanomaterials: Technology and Applications

Author:
ISBN: 9783039210428 / 9783039210435 Year: Pages: 94 DOI: 10.3390/books978-3-03921-043-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Silicon has been proven to be remarkably resilient as a commercial electronic material. The microelectronics industry has harnessed nanotechnology to continually push the performance limits of silicon devices and integrated circuits. Rather than shrinking its market share, silicon is displacing “competitor” semiconductors in domains such as high-frequency electronics and integrated photonics. There are strong business drivers underlying these trends; however, an important contribution is also being made by research groups worldwide, who are developing new configurations, designs, and applications of silicon-based nanoscale and nanostructured materials. This Special Issue features a selection of papers which illustrate recent advances in the preparation of chemically or physically engineered silicon-based nanostructures and their application in electronic, photonic, and mechanical systems.

Multi-Walled Carbon Nanotubes

Author:
ISBN: 9783039212293 / 9783039212309 Year: Pages: 184 DOI: 10.3390/books978-3-03921-230-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.

Keywords

water based nanofluid --- carbon-nanotubes --- boundary layer --- heat generation --- thermal radiation --- curved stretching sheet --- numerical solution --- Single-Walled Carbon Nanotube (SWCNT) --- Multi-Walled Carbon Nanotube (MWCNT) --- MHD --- Casson model --- stretching sheet --- non-linear thermal radiation --- HAM --- zeolitic imidazolate framework --- multi-walled carbon nanotubes --- magnetic solid phase extraction --- organochlorine pesticides --- agricultural irrigation water --- Pd-CNT nanohybrids --- functionalized CNTs --- polarity --- semi-homogeneous catalysis --- heck reaction --- nanomaterials --- multi-walled carbon nanotubes --- synthesis methods --- electrochemical properties --- electrochemical sensors --- electroanalysis --- sensing applications --- multiwalled carbon nanotubes --- gold(I) --- gold(III) --- adsorption --- elution --- gold nanoparticles --- adsorption --- multi-walled carbon nanotubes --- nonylphenol --- kinetics --- multi-walled carbon nanotubes --- graphene oxide --- cerium oxide --- lubricating oil additives --- multi-wall carbon nanotube (MWCNT) --- azide-alkyne click chemistry --- RAFT polymerization --- PMMA --- carbon nanotubes --- composites --- radar absorbing materials --- complex permittivity --- chloride diffusion --- cement mortars --- carbon nanotubes --- mechanical properties --- electrical properties --- hydrophobic drugs --- drug delivery --- functionalized carbon nanotubes --- dissolution rate --- nanomedicine --- polymeric composites --- silicone rubber --- Ionic liquid --- carbon materials --- structural --- EMI shielding --- n/a

MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 / 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

Advances in Food Analysis

Authors: ---
ISBN: 9783039217427 / 9783039217434 Year: Pages: 488 DOI: 10.3390/books978-3-03921-743-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Topical Collection of Molecules provides the most recent advancements and trends within the framework of food analysis, confirming the growing public, academic, and industrial interest in this field. The articles broach topics related to sample preparation, separation science, spectroscopic techniques, sensors and biosensors, as well as investigations dealing with the characterization of macronutrients, micronutrients, and other biomolecules. It offers the latest updates regarding alternative food sources (e.g., algae), functional foods, effects of processing, chiral or achiral bioactive compounds, contaminants, and every topic related to food science that is appealing to readers. Nowadays, the increasing awareness of the close relation among diet, health, and social development is stimulating demands for high levels of quality and safety in agro-food production, as well as new studies to fill gaps in the actual body of knowledge about food composition. For these reasons, modern research in food science and human nutrition is moving from classical methodologies to advanced instrumental platforms for comprehensive characterization. Nondestructive spectroscopic and imaging technologies are also proposed for food process monitoring and quality control in real time.

Keywords

cuprous oxide nanoparticles --- reduced graphene oxide --- modified electrode --- sunset yellow --- second-derivative linear sweep voltammetry --- clenbuterol --- systematic evolution of ligands by exponential enrichment --- real-time quantitative PCR --- high-throughput sequencing technology --- aptamers --- gold nanoparticles biosensor --- carbamates --- multiple reaction monitoring (MRM) --- enhanced product ion (EPI) --- mass fragmentation --- confirmatory method --- pesticide residues --- Croatian wines --- biogenic amines --- HPLC --- geographical origin --- polyelectrolyte composite film --- nitrite detection --- differential pulse voltammetry --- cyclic voltammetry --- mycotoxin --- dimerization --- HRMS --- NMR --- fruit jams --- food security --- phenolic acids --- quercetin --- agro-biodiversity --- HPLC fingerprint --- Polygonatum cyrtonema --- saccharides --- oligosaccharides --- fructose --- HPLC–QTOF–MS/MS --- steaming --- essential oil --- extraction techniques --- hops extracts --- hydrodistillation --- Marynka strain --- microwave-assisted hydrodistillation --- anthocyanins --- bioactive compounds --- Box–Behnken design --- microwave-assisted extraction --- myrtle --- Myrtus communis --- phenolic compounds --- Chia seed oil --- polyunsaturated fatty acid --- antioxidant --- lipid-lowering effect --- collagen peptide --- HPLC fingerprint --- antioxidant --- anti-inflammatory --- spectrum-effect relationship --- amino acids --- carbohydrates --- acidity --- polarity --- molecular weight --- Tricholoma matsutake --- Pol gene --- qualitative and quantitative PCR --- DNA extraction --- ?-blockers --- metabolites --- milk powder --- Q-Orbitrap --- rosé wines --- white wines --- bottle aging --- flavor profile --- closures --- anthocyanins --- bioactive compounds --- Box–Behnken design --- ultrasound-assisted extraction --- myrtle --- Myrtus communis L. --- phenolic compounds --- food safety --- kiwifruit (Actinidia chinensis) --- molecular identification --- phylogeny --- DNA barcode --- hard clams --- Meretrix lyrata --- lipid classes --- fatty acids --- phospholipids --- molecular species of phospholipid --- high resolution mass spectrometry --- impedimetric aptasensor --- screen-printed interface --- bifunctional polymer arms --- PAT detection --- apple juice --- chiral --- chiral stationary phases --- enantiomers --- food --- review --- Piper methysticum (kava) --- kavalactones --- flavokavains --- UHPLC-UV --- mass spectra --- isomerization --- single-laboratory validation --- quality control --- Lactarius deliciosus --- chemical composition --- antioxidant --- antihyperglycemic --- ?13C-IRMS --- fatty acids composition --- 1H-NMR --- walnut varieties --- poultry eggs --- thiamphenicol --- florfenicol --- florfenicol amine --- ASE --- UPLC-FLD --- Sojae semen praeparatum (SSP) --- fermentation --- conversion --- ultra-fast liquid chromatography (UFLC)–TripleTOF MS --- principal component analysis (PCA) --- microalgae --- Scenedesmus --- supercritical fluid extraction --- carotenoids --- fat-soluble vitamins --- antioxidants --- fruit juice --- blends --- adulteration --- 1H NMR --- PLS --- chemometrics --- natural mature honey --- immature honey --- chemometric analysis --- multi-physicochemical parameters --- food quality --- IMS --- food composition --- food process control --- food authentication --- food adulteration --- food safety --- antibiotics --- liquid chromatography mass spectrometry --- milk --- muscle --- validation

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

eng (6)


Year
From To Submit

2019 (6)