Search results: Found 7

Listing 1 - 7 of 7
Sort by
Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation-based Work-Hardening

Author:
Book Series: Schriftenreihe Kontinuumsmechanik im Maschinenbau / Karlsruher Institut für Technologie, Institut für Technische Mechanik - Bereich Kontinuumsmechanik ISSN: 2192693X ISBN: 9783731502456 Year: Volume: 5 Pages: XIII, 260 p. DOI: 10.5445/KSP/1000042280 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This book is a contribution to the further development of gradient plasticity. Several open questions are addressed, where the efficient numerical implementation is particularly focused on. Thebook inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. Experiments can successfully be reproduced. The hardening model is based on dislocation densities evolving according to partial differential equations taking into account dislocation transport.

Radiation Tolerant Electronics

Author:
ISBN: 9783039212798 / 9783039212804 Year: Pages: 210 DOI: 10.3390/books978-3-03921-280-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Keywords

physical unclonable function --- FPGA --- total ionizing dose --- Co-60 gamma radiation --- ring-oscillator --- Image processing --- line buffer --- SRAM-based FPGA --- single event upset (SEU) --- configuration memory --- soft error --- radiation-hardened --- instrumentation amplifier --- sensor readout IC --- total ionizing dose --- nuclear fusion --- radiation hardening --- hardening by design --- TMR --- selective hardening --- VHDL --- FPGA --- radiation hardening --- single event upsets --- heavy ions --- error rates --- single-event upsets (SEUs) --- digital integrated circuits --- triple modular redundancy (TMR) --- radiation hardening by design --- TMR --- FMR --- 4MR --- triplex–duplex --- FPGA-based digital controller --- radiation tolerant --- single event effects --- proton irradiation --- RFIC --- SEE testing --- space application --- CMOS --- TDC --- radiation effects --- total ionizing dose (TID) --- single-shot --- PLL --- ring oscillator --- analog single-event transient (ASET) --- bandgap voltage reference (BGR) --- CMOS analog integrated circuits --- gamma-rays --- heavy-ions --- ionization --- protons --- radiation hardening by design (RHBD) --- reference circuits --- single-event effects (SEE) --- space electronics --- total ionization dose (TID) --- voltage reference --- X-rays --- radiation-hardened --- single event gate rupture (SEGR) --- SEB --- power MOSFETs --- Single-Event Upsets (SEUs) --- radiation effects --- Ring Oscillators --- Impulse Sensitive Function --- Radiation Hardening by Design --- fault tolerance --- single event upset --- proton irradiation effects --- neutron irradiation effects --- soft errors --- saturation effect --- gain degradation --- total ionizing dose --- gamma ray --- bipolar transistor --- single event transient (SET) --- single event opset (SEU) --- radiation-hardening-by-design (RHBD) --- frequency synthesizers --- voltage controlled oscillator (VCO) --- frequency divider by two --- CMOS --- n/a

Small Scale Deformation using Advanced Nanoindentation Techniques

Authors: ---
ISBN: 9783038979661 / 9783038979678 Year: Pages: 168 DOI: 10.3390/books978-3-03897-967-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Small scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of these depth-sensing instruments have been improved considerably. They can perform experiments in vacuum and at high temperatures, such as in-situ SEM and TEM nanoindenters. This allows researchers to visualize mechanical deformations and dislocations motion in real time. Time-dependent behavior of soft materials has also been studied in recent research works. This Special Issue on ""Small Scale Deformation using Advanced Nanoindentation Techniques""; will provide a forum for researchers from the academic and industrial communities to present advances in the field of small scale contact mechanics. Materials of interest include metals, glass, and ceramics. Manuscripts related to deformations of biomaterials and biological related specimens are also welcome. Topics of interest include, but are not limited to:

Tribology and Surface Engineering

Author:
ISBN: 9783039280841 / 9783039280858 Year: Pages: 174 DOI: 10.3390/books978-3-03928-085-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Microstructure and Mechanical Properties of Structural Metals and Alloys

Author:
ISBN: 9783038975052 / 9783038975069 Year: Pages: 272 DOI: 10.3390/books978-3-03897-506-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.

Keywords

Mg–Sm–Zn–Zr --- dynamic precipitation --- microstructure --- mechanical property --- bimodal ferrite steel --- ultrafine-grained microstructure --- mechanical properties --- corrosion resistance --- abnormal grain growth --- grain boundary engineering --- electron backscattered diffraction --- growth rate --- Al metal matrix composites --- microstructure --- mechanical properties --- strengthening mechanism --- hot compression --- dynamic recovery --- dynamic recrystallization --- texture --- aluminum alloys --- Al-Fe-Si-Zr system --- microstructure --- hardness --- electrical conductivity --- metal–matrix composite --- high-pressure torsion --- microstructure evolution --- microhardness --- shape memory alloy --- columnar grain --- Cu-Al-Mn --- elastocaloric effect --- strain rate --- measuring temperature --- creep --- lead-free solder --- Sb solder --- Sn-8.0Sb-3.0Ag --- solder microstructure --- martensitic steels --- creep --- precipitation --- electron microscopy --- high-Mn TWIP steel --- cold rolling --- annealing --- recovery --- recrystallization --- strengthening --- austenitic 304 stainless steels --- sub-merged arc welding --- post-weld heat treatment --- aluminum alloys --- aging --- precipitation --- electrical resistivity --- mechanical properties --- ferritic steel --- irradiation --- nanoindentation --- hardness --- transmission electron microscopy (TEM) --- microstructure --- high-entropy alloys --- high-pressure torsion --- microstructure evolution --- twinning --- mechanical properties --- welded rotor --- weld metal --- impact toughness --- PWHT --- microstructure evolution --- Cu-Cr-Zr --- precipitation --- orientation relationship --- recrystallization --- annealing twins --- structural steel plate --- nonmetallic inclusions --- rare earth control --- M23C6 --- ion irradiation --- M6C --- amorphization --- RAFM steels --- hot stamping --- press hardening --- martensitic expansion --- force peak --- cycle time --- high-Mn steel --- deformation twinning --- dynamic recrystallization --- grain refinement --- work hardening --- in situ tensile testing --- super duplex stainless steel --- SDSS --- low-temperature --- ?-phase --- SEM --- EBSD --- microstructure analysis --- n/a

Micro/Nano Manufacturing

Authors: ---
ISBN: 9783039211692 / 9783039211708 Year: Pages: 208 DOI: 10.3390/books978-3-03921-170-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies.

Keywords

fluid jet polishing --- deterministic polishing --- variable pitch path --- residual error optimization --- path adaptability --- chatter identification --- three-dimensional elliptical vibration cutting --- empirical mode decomposition --- intrinsic mode function --- feature extraction --- micro-EDM molds --- micro-lens array --- contactless embossing --- friction coefficient --- micro 3D printing --- micro stereolithography --- process parameter optimization --- Taguchi’s method --- multi-objective particle swarm optimization --- flow control --- culture dish adapter --- small recess structure --- closed environment --- perfusion culture --- optical encoder --- grating --- blaze --- injection molding --- micro assembly --- active alignment --- opto-ASIC --- wafer-level optics --- antireflection nanostructure --- microlens array mold --- ultraprecision machining --- anodic aluminum oxide --- spatial uncertainty modeling --- additive manufacturing --- uncertainty quantification --- Image segmentation --- gaussian process modeling --- additive manufacturing --- selective laser melting --- surface roughness --- design of experiments --- Ti6Al4V --- SERS --- Surface-enhanced Raman scattering --- nanosphere array --- nanocone array --- hot embossing --- nanoimprinting --- plasma nitriding --- micro-nozzle --- micro-spring --- nitrogen supersaturation --- hardening --- hydrophobicity --- stiffness control --- product development --- conceptual design --- micro assembly --- data structure --- design for manufacturability --- low PC clinker --- Portland limestone ternary fiber–cement nanohybrids --- flexural strength --- TGA/dTG --- XRD --- MIP --- water impermeability tests --- micro and nano manufacturing --- micro-fluidics --- micro-optics --- micro and nano additive manufacturing --- micro-assembly --- surface engineering and interface nanotechnology --- micro factories --- micro reactors --- micro sensors --- micro actuators

Physical Metallurgy of High Manganese Steels

Authors: ---
ISBN: 9783039218561 / 9783039218578 Year: Pages: 212 DOI: 10.3390/books978-3-03921-857-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.

Keywords

medium-manganese steel --- TRIP --- strain-rate sensitivity --- Lüders band --- serrated flow --- in-situ DIC tensile tests --- TWIP steel --- deformation twinning --- serrated flow --- dynamic strain aging --- damage --- fracture --- medium-manganese --- forging --- austenite reversion --- mechanical properties --- microstructure --- D&amp --- P steel --- processing --- microstructure --- phase transformation --- dislocation density --- mechanical properties --- MMn steel X20CrNiMnVN18-5-10 --- V alloying --- corrosion resistance --- precipitations --- ultrafine grains --- high-manganese steels --- high-entropy alloys --- alloy design --- plastic deformation --- annealing --- microstructure --- texture --- mechanical properties --- neutron diffraction --- austenite stability --- medium manganese steel --- double soaking --- localized deformation --- medium-Mn steel --- hot-stamping --- double soaking --- continuous annealing --- quenching and partitioning --- high strength steel --- high manganese steel --- crash box --- lightweight --- multiscale simulation --- high-Mn steels --- twinning induced plasticity --- cold rolling --- recrystallization annealing --- grain refinement --- strengthening --- austenitic high nitrogen steel (HNS) --- cold deformation --- fatigue --- high manganese steel --- warm rolling --- processing --- microstructure --- texture --- mechanical properties --- deformation behavior --- high-manganese steel --- deep rolling --- TWIP --- TRIP --- near surface properties --- residual stresses --- fatigue behavior --- intercritical annealing --- medium manganese steel --- phase field simulation --- medium-Mn steel --- austenite-reversed-transformation --- retained austenite --- hydrogen embrittlement --- ultrafine-grained microstructure --- strain-hardening behavior --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search
-->