Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Heat Transfer Processes in Oscillatory Flow Conditions

Author:
ISBN: 9783038427094 9783038427100 Year: Pages: VI, 172 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Heat
Added to DOAB on : 2018-04-27 16:01:54
License:

Loading...
Export citation

Choose an application

Abstract

Heat exchange processes in steady flows have been studied extensively over the last two hundred years, and are now a part of undergraduate syllabi in most engineering courses. However, heat transfer processes in oscillatory flow conditions are still not very well understood. Their importance is well recognized in applications including Stirling machines, thermoacoustic engines, and refrigerators or pulsed-tube coolers in cryogenics. Additionally, the enhancement of heat transfer by using oscillatory, and, in some cases, pulsating flows is important in many areas of mechanical and chemical engineering for the intensification of heat transfer processes and possible miniaturization of heat exchangers of the future.This Special Issue was intended as a dissemination platform for researchers working in the field to have an opportunity to consolidate recent advances in this important research area. All types of research approaches were invited, including experimental, theoretical, computational fluid dynamics (CFD), and their combinations, while the approaches could be either of a fundamental or applied nature. The guest editor and the editorial team of Applied Sciences hope that the readership will find the selection of ten articles presented here a useful contribution to the emerging field of heat transfer processes in oscillatory flow conditions.

Numerische Untersuchung des Wärmeübertragungsverhaltens in unterschiedlichen porösen Medien

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731502524 Year: Volume: 42 Pages: VI, 225 p. DOI: 10.5445/KSP/1000042451 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

This presentation deals with simulation studies that will be interpreted as numerical experiments. Porous structures are modelled in three dimensions (microstructure models). Heat transfer and pressure drop of the flow through a porosity is analysed using the numerical solution of the Navier-Stokes equations (CFD). Empirical correlations for simplified calculations are presented that can be used by engineers for rough estimates and design of components with porosities like metal foam.

Flow and Heat or Mass Transfer in the Chemical Process Industry

Authors: ---
ISBN: 9783038972389 9783038972396 Year: Pages: 214 DOI: 10.3390/books978-3-03897-239-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-09-28 12:14:25
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[Flow through process equipment in a chemical or manufacturing plant (e.g., heat exchangers, reactors, catalyst regeneration units, separation units, pumps, pipes, smoke stacks, etc.) is usually coupled with heat and/or mass transfer. Rigorous investigation of this coupling of momentum, heat, and mass transfer is not only important for the practice of designing process equipment, but is also important for improving our overall theoretical understanding of transfer phenomena. While generalizations and empiricisms, like the concept of the heat transfer coefficient or the widely used Reynolds analogy in turbulence, or the use of empirical transfer equations for flow in separation towers and reactors packed with porous media, have served practical needs in prior decades, such empiricisms can now be revised or altogether replaced by bringing modern experimental and computational tools to bear in understanding the interplay between flow and transfer. The patterns of flow play a critical role in enhancing the transfer of heat and mass. Typical examples are the coherent flow structures in turbulent boundary layers, which are responsible for turbulent transfer and mixing in a heat exchanger and for dispersion from a smoke stack, and the flow patterns that are a function of the configuration of a porous medium and are responsible for transfer in a fixed bed reactor or a fluid bed regenerator unit. The goal of this Special Issue is to be a forum for recent developments in theory, state-of-the-art experiments and computations on the interactions between flow and transfer in single and multi-phase flow, and from small scales to large scales, which can be important for the design of equipment in a chemical processing plant.]

Recent Developments of Nanofluids

Author:
ISBN: 9783038428336 9783038428343 Year: Pages: VIII, 150 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Chemistry (General)
Added to DOAB on : 2018-08-24 15:50:37
License:

Loading...
Export citation

Choose an application

Abstract

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Advanced Energy Storage Technologies and Their Applications (AESA)

Authors: --- ---
ISBN: 9783038425441 9783038425458 Year: Pages: 430 DOI: 10.3390/books978-3-03842-545-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-02-26 15:40:34
License:

Loading...
Export citation

Choose an application

Abstract

The depletion of fossil fuels, the increase of energy demands, and the concerns over climate change are the major driving forces for the development of renewable energy, such as solar energy and wind power. However, the intermittency of renewable energy has hindered the deployment of large-scale intermittent renewable energy, which, therefore, has necessitated the development of advanced large-scale energy storage technologies. The use of large-scale energy storage can effectively improve the efficiency of energy resource utilization, and increase the use of variable renewable resources, the energy access, and the end-use sector electrification (e.g., electrification of transport sector).This Special Issue will provide a platform for presenting the latest research results on the technology development of large-scale energy storage. We welcome research papers about theoretical, methodological and empirical studies, as well as review papers, that provide critical overview on the state of the art of technologies. This special issue is open to all types of energy, such as thermal energy, mechanical energy, electrical energy and chemical energy, using different types of systems, such as phase change materials, batteries, supercapacitors, fuel cells, compressed air, etc., which are applicable to various types of applications, such as heat and power generation, electrical/hybrid transportation, etc.

Feature Papers

Author:
ISBN: 9783038420705 9783038420712 Year: Pages: X, 392 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 09:20:18
License:

Loading...
Export citation

Choose an application

Abstract

This special issue contains the first papers of Processes and is intended to highlight a diverse set of topics related to process technology for the chemical, materials, biochemical, pharmaceutical and biomedical industries. To enhance the impact of these industries on society, process innovation that allows large-scale manufacturing is essential for both established and emerging technologies. The scope of this special issue includes, but is not limited to: chemical and biochemical reaction processes: mixing, fluid processing and heat transfer systems; mass transfer, separation and purification processes; integrated process design and scale-up; and process modeling, simulation, optimization and control.

Material and Process Design for Lightweight Structures

Author:
ISBN: 9783038979586 / 9783038979593 Year: Pages: 162 DOI: 10.3390/books978-3-03897-959-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates to reduce vehicle mass and develop efficient new lightweight designs. Automotive weight reduction with high-strength steel is also witnessing major ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient, lightweight steel components. Although great progress has been made over the past decades in understanding the thermomechanical behavior of these materials, their extensive use as lightweight solutions is still limited due to numerous challenges that play a key role in cost competitiveness. Hence, significant research efforts are still required to fully understand the anisotropic material behavior, failure mechanisms, and, most importantly, the interplay between industrial processing, microstructure development, and the resulting properties. This Special Issue reprint book features concise reports on the current status in the field. The topics discussed herein include areas of manufacturing and processing technologies of materials for lightweight applications, innovative microstructure and process design concepts, and advanced characterization techniques combined with modeling of material’s behavior.

Selected Problems in Fluid Flow and Heat Transfer

Author:
ISBN: 9783039214273 / 9783039214280 Year: Pages: 460 DOI: 10.3390/books978-3-03921-428-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

performance characteristics --- Positive Temperature Coefficient (PTC) elements --- heat transfer --- thermal performance --- Computational Fluid Dynamics (CFD) simulation --- air heater --- impingement heat transfer enhancement --- orthogonal jet --- turbulence --- flat plate --- Colebrook equation --- Colebrook-White --- flow friction --- iterative procedure --- logarithms --- Padé polynomials --- hydraulic resistances --- turbulent flow --- pipes --- computational burden --- thermodynamic --- numerical simulation --- thermal effect --- axial piston pumps --- microbubble pump --- bubble generation --- pump efficiency --- bubble size --- concentration --- particle counter --- flow-induced motion --- sharp sections --- T-section prism --- load resistances --- section aspect ratios --- energy conversion --- thermosyphon --- phase change --- two-phase flow --- visualization --- superheated steam --- triaxial stress --- thermogravimetry --- X-ray microtomography --- thermal cracking --- microbubbles --- fluidics --- flow oscillation --- oscillators --- energetics --- pressure loss --- pressure drop --- friction factor --- multiphase flow --- flow rate --- flow regime --- POD --- entropy generation --- boundary layer --- laminar separation bubble --- two-phase flow --- pump performance --- computational fluid dynamics --- centrifugal pump --- flow behavior --- magnetic field --- ferrofluid --- porous cavity --- heat transfer --- mass transfer --- numerical modeling --- numerical modeling --- surrogate model --- correlation --- fin-tube --- spiral fin-tube --- CFD --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- nonlinear thermal radiation --- heat transfer --- chemical reaction --- mass transfer --- method of moment --- numerical results --- transient analysis --- pumps --- moment of inertia --- water hammer --- pipe flow --- wind turbine --- downwind --- tower shadow --- load --- tower --- BEM --- actuator disc --- CANDU-6 --- PHWR --- moderator --- turbulence --- OpenFOAM --- printed circuit heat exchanger --- supercritical LNG --- zigzag type --- heat transfer performance --- gas turbine engine --- particle deposition --- capture efficiency --- multiphase flow --- tip leakage flow --- detached-eddy simulation --- vortex breakdown --- transonic compressor --- POD --- tip leakage flow --- decomposition region --- decomposition dimensionalities --- vortex identification --- SPIV --- fire-spreading characteristics --- real vehicle experiments --- toxic gases --- temperature distributions --- unsteady heat release rate --- thermal energy recovery --- flue gas --- dew point temperature --- condensation --- Aspen® --- thermoacoustic electricity generator --- multi-stage --- traveling-wave heat engine --- push-pull --- inertance-compliance --- acoustic streaming --- n/a

Continuous Casting

Author:
ISBN: 9783039213214 / 9783039213221 Year: Pages: 250 DOI: 10.3390/books978-3-03921-322-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Continuous casting is an industrial process whereby molten metal is solidified into a semi-finished billet, bloom, or slab for subsequent rolling in finishing mills; it is the most frequently used process to cast not only steel, but also aluminium and copper alloys. Since its widespread introduction for steel in the 1950s, it has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardized production of a product, as well as providing increased control over the process through automation. Nevertheless, challenges remain and new ones appear, as ways are sought to minimize casting defects and to cast alloys that could originally only be cast via other means. This Special Issue of the journal ""Metals"" consists of 14 research articles that cover many aspects of experimental work and theoretical modelling related to the ongoing development of continuous casting processes.

Keywords

slab continuous casting --- hybrid simulation model --- uneven secondary cooling --- numerical simulation --- molten steel flow --- solidification --- inclusion motion --- inclusion entrapment --- billet continuous casting --- swirling flow tundish --- multiphase flow --- heat transfer --- mold --- continuous casting --- numerical simulation --- round bloom --- continuous casting --- final electromagnetic stirring --- electromagnetic field --- polycrystalline model --- pores --- inclusions --- mechanism --- beam blank --- crystal --- propagation --- asymptotic analysis --- numerical simulation --- continuous casting --- air mist spray cooling --- continuous casting --- heat flux --- HTC --- secondary cooling --- thin-slab cast direct-rolling --- austenite grain coarsening --- grain growth control --- liquid core reduction --- secondary cooling --- two-phase pinning --- annular argon blowing --- upper nozzle --- flow behavior --- argon gas distribution --- tundish --- continuous casting --- bulge deformation --- thermomechanical coupling --- segmented roller --- finite element analysis --- steel tundish --- baffle --- flow field --- velocity --- PIV --- multi-source information fusion --- data stream --- continuous casting --- roll gap value --- prediction --- global optimization --- support vector regression --- variational mode decomposition --- empirical mode decomposition --- support vector regression --- mold level --- continuous casting --- magnetohydrodynamics --- fluid flow --- bubbles --- inclusions --- entrapment --- entrainment --- heat transfer --- solidification --- slab mold --- continuous casting --- n/a

Clean Energy and Fuel (Hydrogen) Storage

Authors: ---
ISBN: 9783039216307 / 9783039216314 Year: Pages: 278 DOI: 10.3390/books978-3-03921-631-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Keywords

dye-sensitized solar cells --- carbon materials --- Ag nanoparticles --- freestanding TiO2 nanotube arrays --- gas turbine engine --- lean direct injection --- four-point --- low emissions combustion --- carbonate gas reservoirs --- water invasion --- recovery factor --- aquifer size --- production rate --- hydrogen storage --- complex hydrides --- nanocatalyst --- LiNH2 --- MgH2 --- ball milling --- Li-ion batteries --- nanocomposite materials --- cathode --- anode --- binder --- separator --- ionic liquid --- vertically oriented graphene --- electrical double layers --- charge density --- capacitance --- gas storage --- material science --- rock permeability --- synthetic rock salt testing --- Klinkenberg method --- hydrogen storage systems --- hydrogen absorption --- thermochemical energy storage --- metal hydride --- magnetism --- heat transfer enhancement --- Power to Liquid --- Fischer–Tropsch --- dynamic modeling --- lab-scale --- lithium-ion batteries --- simplified electrochemical model --- state of charge estimator --- extended kalman filter --- hot summer and cold winter area --- PCM roof --- comprehensive incremental benefit --- conjugate phase change heat transfer --- lattice Boltzmann method --- large-scale wind farm --- auxiliary services compensation --- battery energy storage system --- optimal capacity --- equivalent loss of cycle life --- hydrogen storage --- porous media --- bacterial sulfate reduction --- methanogenesis --- gas loss --- diffusion --- reactive transport modeling --- PHREEQC --- energy discharge --- bubbles burst --- bubbles transportation --- crystal growth rates --- undercooling --- salt cavern --- leaching tubing --- flutter instability --- flow-induced vibration --- internal and reverse external axial flows --- thermal energy storage (TES) --- slag --- regenerator --- concentrated solar power (CSP) --- quality function deployment (QFD) --- failure mode and effect analysis (FMEA) --- thermal energy storage --- electrochemical energy storage --- hydrogen energy storage --- salt cavern energy storage

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search