Search results: Found 3

Listing 1 - 3 of 3
Sort by
Genetics and epigenetics of fetal alcohol spectrum disorders

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195732 Year: Pages: 114 DOI: 10.3389/978-2-88919-573-2 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Science (General) --- Genetics
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Women drinking during pregnancy can result in Fetal Alcohol Spectrum Disorder (FASD), which may feature variable neurodevelopmental deficits, facial dysmorphology, growth retardation, and learning disabilities. Research suggests the human brain is precisely formed through an intrinsic, genetic-cellular expression that is carefully orchestrated by an epigenetic program. This program can be influenced by environmental inputs such as alcohol. Current research suggests the genetic and epigenetic elements of FASD are heavily intertwined and highly dependent on one another. As such, now is the time for investigators to combine genetic, genomic and epigenetic components of alcohol research into a centralized, accessible platform for discussion. Genetic analyses inform gene sets which may be vulnerable to alcohol exposure during early neurulation. Prenatal alcohol exposure indeed alters expression of gene subsets, including genes involved in neural specification, hematopoiesis, methylation, chromatin remodeling, histone variants, eye and heart development. Recently, quantitative genomic mapping has revealed loci (QTLs) that mediate alcohol-induced phenotypes identified between two alcohol-drinking mouse strains. One question to consider is (besides the role of dose and stage of alcohol exposure) why only 5% of drinking women deliver newborns diagnosed with FAS (Fetal Alcohol Syndrome)? Studies are ongoing to answer this question by characterizing genome-wide expression, allele-specific expression (ASE), gene polymorphisms (SNPs) and maternal genetic factors that influence alcohol vulnerability. Alcohol exposure during pregnancy, which can lead to FASD, has been used as a model to resolve the epigenetic pathway between environment and phenotype. Epigenetic mechanisms modify genetic outputs through alteration of 3D chromatin structure and accessibility of transcriptional machinery. Several laboratories have reported altered epigenetics, including DNA methylation and histone modification, in multiple models of FASD. During development DNA methylation is dynamic yet orchestrated in a precise spatiotemporal manner during neurulation and coincidental with neural differentiation. Alcohol can directly influence epigenetics through alterations of the methionine pathway and subsequent DNA or histone methylation/acetylation. Alcohol also alters noncoding RNA including miRNA and transposable elements (TEs). Evidence suggests that miRNA expression may mediate ethanol teratology, and TEs may be affected by alcohol through the alteration of DNA methylation at its regulatory region. In this manner, the epigenetic and genetic components of FASD are revealing themselves to be mechanistically intertwined. Can alcohol-induced epigenomic alterations be passed across generations? Early epidemiological studies have revealed infants with FASD-like features in the absence of maternal alcohol, where the fathers were alcoholics. Novel mechanisms for alcohol-induced phenotypes include altered sperm DNA methylation, hypomethylated paternal allele and heritable epimutations. These studies predict the heritability of alcohol-induced epigenetic abnormalities and gene functionality across generations. We opened a forum to researchers and investigators the field of FASD to discuss their insights, hypotheses, fresh data, past research, and future research themes embedded in this rising field of the genetics and epigenetics of FASD. This eBook is a product of the collective sharing and debate among researchers who have contributed or reviewed each subject.

Epigenetic Modifications and Viral Infections

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195879 Year: Pages: 111 DOI: 10.3389/978-2-88919-587-9 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Epigenetics is defined as the study of modifications of the genome, heritable during cell division that does not involve changes in DNA sequences. Up to date, epigenetic modifications involve at least three general mechanisms regulating gene expression: histone modifications, DNA methylation, and non-coding RNAs (ncRNAs). For the past two decades, an explosion in our interest and understanding of epigenetic mechanisms has been seen. This mainly based on the influence that epigenetic alterations have on an amazing number of biological processes, such as gene expression, imprinting, programmed DNA rearrangements, germ line silencing, developmentally cued stem cell division, and overall chromosomal stability and identity. It has become also evident that the constant exposure of living organisms to environment factors affects their genomes through epigenetic mechanisms. Viruses infecting animal cells are thought to play central roles in shaping the epigenetic scenario of infected cells. In this context it has become obvious that knowing the impact that viral infections have on the epigenetic control of their host cells will certainly lead to a better understanding of the interplay viruses have with animal cells. In fact, DNA viruses use host transcription factors as well as epigenetic regulators in such a way that they affect epigenetic control of gene expression that extends to host gene expression. At the same time, animal cells employ mechanisms controlling transcription factors and epigenetic processes, in order to eliminate viral infections. In summary, epigenetic mechanisms are involved in most virus-cell interactions. We now know that some viruses exhibit epigenetic immune evasion mechanisms to survive and propagate in their host; however, there is still much ambiguity over these epigenetic mechanisms of viral immune evasion, and most of the discovered mechanisms are still incomplete. Other animal viruses associated to cancer often deregulate cellular epigenetic mechanisms, silencing cellular tumor-suppressor genes and/or activating either viral or host cell oncogenes. In addition, in several cancers the down-regulation of tumor suppressor protein-coding genes and ncRNAs with growth inhibitory functions, such as miRNAs, have been closely linked to the presence of cell CpG island promoter hypermethylation. The goal of the aforementioned Research Topic is to bring together the key experimental and theoretical research, linking state-of-the-art knowledge about the epigenetic mechanisms involved in animal virus-cell interactions.

AMP-Activated Protein Kinase Signalling

Authors: ---
ISBN: 9783038976622 Year: Pages: 452 DOI: 10.3390/books978-3-03897-663-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.

Keywords

exercise --- glucose uptake --- AMP-activated protein kinase --- TBC1D4 --- AS160 --- AMP-activated protein kinase --- developmental origins of health and disease (DOHaD) --- hypertension --- kidney disease --- nutrient-sensing signals --- oxidative stress --- renin-angiotensin system --- AMPK --- autophagy --- co-expression --- microarrays --- 3T3-L1 --- adipocyte --- differentiation --- AMPK --- tight junctions --- epithelial cells --- ZO-1 --- par complex --- MDCK --- nectin-afadin --- adherent junctions --- TAK1 --- AMPK --- phosphorylation --- AMPK kinase --- endothelial nitric-oxide synthase --- vasodilation --- phenylephrine --- vasoconstriction --- endothelial cells --- ionomycin --- AMPK --- liver --- lipid metabolism --- fatty acid oxidation --- indirect calorimetry --- atrophy --- regrowth --- sirtuin 1 (SIRT1) --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- heat shock protein --- fiber-type --- AMPK --- monocytes --- macrophages --- differentiation --- autophagy --- AML --- MDS --- CML --- CMML --- pregnancy --- catechol-O-methyltransferase --- 2-methoxyestradiol --- preeclampsia --- gestational diabetes mellitus --- AMPK --- IL-1? --- NLRP3 --- nutrition --- dietary fatty acids --- metabolic-inflammation --- nutrigenomics --- AMPK --- LKB1 --- autophagy --- proteasome --- hypertrophy --- atrophy --- skeletal muscle --- AICAR --- mTOR --- protein synthesis --- AMPK --- epigenetics --- chromatin remodeling --- histone modification --- DNA methylation --- medulloblastoma --- sonic hedgehog --- AMPK --- AMP-activated protein kinase (AMPK) --- spermatozoa --- motility --- mitochondria --- membranes --- signaling --- stress --- assisted reproduction techniques --- AMP-activated protein kinase --- epigenetics --- protein acetylation --- KATs --- HDACs --- acetyl-CoA --- NAD+ --- AMP-activated protein kinase --- glycogen --- exercise --- metabolism --- cellular energy sensing --- energy utilization --- liver --- skeletal muscle --- metabolic disease --- glycogen storage disease --- resveratrol --- AMPK --- hepatocyte --- liver --- steatosis --- transporter --- carrier --- pump --- membrane --- energy deficiency --- AMPK --- infection --- mycobacteria --- host defense --- energy metabolism --- AMPK --- activation loop --- AID --- ?-linker --- ?-linker --- CBS --- LKB1 --- CaMKK2 --- ?RIM --- hypothalamus --- adenosine monophosphate-activated protein kinase --- adipose tissue --- food intake --- adaptive thermogenesis --- beiging --- AMPK --- HDAC4/5 --- p70S6K --- MyHC I(?), motor endplate remodeling --- soleus muscle --- mechanical unloading --- hindlimb suspension --- AMPK --- synaptic activation --- PKA --- CREB --- soluble Adenylyl cyclase --- Immediate early genes --- transcription --- AMPK --- autophagy --- metabolism --- mTOR --- ULK --- AMP-activated protein kinase --- protein kinase B --- Akt --- insulin signalling --- A769662 --- endothelial function --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search