Search results: Found 4

Listing 1 - 4 of 4
Sort by
Optics and Spectroscopy for Fluid Characterization

Author:
ISBN: 9783038970217 9783038970224 Year: Pages: VIII, 120 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering
Added to DOAB on : 2018-08-21 15:51:54
License:

Loading...
Export citation

Choose an application

Abstract

All over the world, there is a huge and ever-increasing interest in the development and application of optical and spectroscopic techniques to characterize fluids in engineering and science. The large number of review articles that are frequently published in these areas is evidence of this. Recent examples have focused on applications of optical diagnostics to gas phase environments, liquids, and multiphase systems. A key feature of such light-based methods is that they are usually non-intrusive, and hence they do not notably affect the system under investigation. As a consequence, optical techniques have been developed for many decades and represent the gold standard in many fields. The list of individual techniques utilizing absorption, refraction, diffraction and scattering effects is long and so is the list of the parameters that can be determined. The latter includes macroscopic properties such as temperature, chemical composition, thermophysical quantities, and flow velocity, but molecular information, e.g., about isomerism and intermolecular interactions, can also be obtained. This Special Issue entitled “Optics and Spectroscopy for Fluid Characterization” aims to demonstrate the breadth of the field in terms of methodology, as well as applications.

Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications

Authors: ---
ISBN: 9783039218288 9783039218295 Year: Pages: 172 DOI: 10.3390/books978-3-03921-829-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 ?m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

Biological and Biogenic Crystallization

Author:
ISBN: 9783038975212 Year: Pages: 106 DOI: 10.3390/books978-3-03897-522-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

The intention of the Special Issue ""Biological and Biogenic Crystallization"" was to create an international platform aimed at covering a broad field of results involving the crystallization of biological molecules, including virus and protein crystallization, biogenic crystallization including physiological and pathological crystallization taking place in living organisms (human beings, animals, plants, bacteria, etc.), and bio-inspired crystallization. Despite many years of research on biological and biogenic crystals, there are still open questions as well as hot and timely topics. This Special Issue contains seven articles that present a cross-section of the current research activities in the of field of biological and biogenic crystals. The authors of the presented articles prove the vibrant and topical nature of this field. We hope that this Special Issue will serve as a source of inspiration for future investigations, and will be useful for scientists and researchers who work on the exploration of biological and biogenic crystals.

Product/Process Fingerprint in Micro Manufacturing

Author:
ISBN: 9783039210343 9783039210350 Year: Pages: 274 DOI: 10.3390/books978-3-03921-035-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

micro-injection moulding --- quality assurance --- process monitoring --- micro metrology --- positioning platform --- Halbach linear motor --- commercial control hardware --- diffractive optics --- gratings --- microfabrication --- computer holography --- manufacturing signature --- process fingerprint --- Fresnel lenses --- injection compression molding --- injection molding --- micro structures replication --- confocal microscopy --- optical quality control --- uncertainty budget --- optimization --- precision injection molding --- quality control --- process monitoring --- product fingerprint --- process fingerprint --- electrical discharge machining --- electrical discharge machining (EDM) --- surface roughness --- surface integrity --- optimization --- desirability function --- satellite drop --- electrohydrodynamic jet printing --- charge relaxation time --- laser ablation --- superhydrophobic surface --- process fingerprint --- product fingerprint --- surface morphology --- artificial compound eye --- multi-spectral imaging --- lithography --- spectral splitting --- plasma-electrolytic polishing --- PeP --- surface modification --- finishing --- electro chemical machining --- ECM --- Electro sinter forging --- resistance sintering --- electrical current --- fingerprints --- electrical discharge machining --- micro drilling --- process monitoring --- quality control --- electrochemical machining (ECM) --- process control --- current monitoring --- current density --- surface roughness --- inline metrology --- haptic actuator --- impact analysis --- high strain rate effect --- damping --- 2-step analysis --- micro-grinding --- bioceramics --- materials characterisation --- dental implant --- microinjection moulding --- process fingerprints --- flow length --- quality assurance --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

english (3)

englisch (1)


Year
From To Submit

2019 (3)

2018 (1)