Search results: Found 5

Listing 1 - 5 of 5
Sort by
Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 / 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Mass Spectrometric Proteomics

Author:
ISBN: 9783038978268 9783038978275 Year: Pages: 192 DOI: 10.3390/books978-3-03897-827-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

As suggested by the title of this Special Issue, liquid chromatography-mass spectrometry plays a pivotal role in the field of proteomics. Indeed, the research and review articles  published in the Issue clearly evidence how the data produced by this sophisticated methodology may promote impressive advancements in this area. From among the topics discussed in the Issue, a few point to the development of  new procedures for the  optimization of the experimental conditions that should be applied  for the identification of proteins present in complex mixtures.  Other applications  described in these articles show  the huge potential of  these strategies in the protein profiling of organs and  range from  to the study of post-translational tissue modifications to the investigation of the molecular mechanisms behind human disorders and the identification of potential biomarkers of these diseases.

Plant Innate Immunity 2.0

Author:
ISBN: 9783038975809 Year: Pages: 386 DOI: 10.3390/books978-3-03897-581-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

dieback --- disease management --- Lasiodiplodia theobromae --- mango --- pathogenicity --- Bromoviridae --- plant–virus interactions --- plant defense response --- Prune dwarf virus --- replication process --- systemic and local movement --- plant proteases --- plant immunity --- MTI --- ETI --- SAR --- ISR --- RNA silencing --- RTNLB --- Agrobacterium --- biotic stress responses --- calcium --- calcium signature --- calmodulin --- CMLs --- CDPKs --- plant immunity --- symbiosis --- cell wall --- cellulose synthase --- hypersensitive response --- pathogenesis related-protein 2 --- plant-virus interaction --- Potato virus Y --- ultrastructure --- aphid resistance --- Arabidopsis thaliana --- hydroperoxide lyase --- Macrosiphum euphorbiae --- Myzus persicae --- Solanum lycopersicum --- ?-3 fatty acid desaturase --- Arabidopsis --- azelaic acid --- glycerol-3-phosphate --- light dependent signalling --- methyl salicylate --- N-hydroxypipecolic acid --- pipecolic acid --- salicylic acid --- SAR signalling --- spectral distribution of light --- tobacco --- rice --- Chilo suppressalis --- mitogen-activated protein kinase 4 --- jasmonic acid --- salicylic acid --- ethylene --- herbivore-induced defense response --- downy mildew --- grapevine --- PRRs --- PTI --- VaHAESA --- bismerthiazol --- rice --- induced defense responses --- chemical elicitors --- Sogatella furcifera --- defense-related signaling pathways --- tomato gray mold --- tomato leaf mold --- Bacillus subtilis --- biological control --- Capsicum annuum --- Ralstonia solanacearum --- CaWRKY40b --- immunity --- negative regulator --- transcriptional modulation --- Capsicum annuum --- CaWRKY22 --- immunity --- Ralstonia Solanacearum --- WRKY networks --- metabolomics --- plant defence --- plant–microbe interactions --- priming --- pre-conditioning --- citrus decline disease --- Citrus sinensis --- Bakraee --- “Candidatus Liberibacter” --- “Candidatus Phytoplasma” --- microbiota --- innate immunity --- basal defense --- rice blast --- Magnaporthe oryzae --- proteomics --- iTRAQ --- candidate disease resistance gene --- disease resistance --- downy mildew --- garden impatiens --- leaf transcriptome --- New Guinea impatiens --- RNA-Seq --- polyphenol oxidase --- Camellia sinensis --- Ectropis obliqua --- wounding --- regurgitant --- rice --- OsGID1 --- gibberellin --- herbivore-induced plant defenses --- Nilaparvata lugens --- plant protection products --- agrochemicals --- sustainable crop protection --- food security

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 / 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 / 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

eng (5)


Year
From To Submit

2019 (5)