Search results: Found 4

Listing 1 - 4 of 4
Sort by
The Future of Hyperspectral Imaging

Author:
ISBN: 9783039218226 / 9783039218233 Year: Pages: 220 DOI: 10.3390/books978-3-03921-823-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

Keywords

hyperspectral imaging --- Raman --- fluorescence --- sorting --- quality control --- black polymers --- PZT --- classification --- machine learning --- alternating direction method of multipliers --- Cramer–Rao lower bound --- forward observation model --- linear mixture model --- maximum likelihood --- multiband image fusion --- total variation --- fingerprints --- blood detection --- age determination --- hyperspectral imaging --- lossless compression --- multitemporal hyperspectral images --- information theoretic analysis --- predictive coding --- hyperspectral imaging --- plant phenotyping --- disease detection --- spectral tracking --- time series --- hyperspectral imaging --- principal component analysis --- oxygen saturation --- wound healing --- diabetic foot ulcer --- Raman spectroscopy --- chemical imaging --- compressive detection --- spatial light modulators (SLM) --- digital micromirror device (DMD) --- digital light processor (DLP) --- optimal binary filters --- Chemometrics --- multivariate data analysis --- compressive sensing --- hyperspectral imaging --- multiplexing system --- liquid crystal --- three-dimensional imaging --- integral imaging --- remote sensing --- point target detection --- CS-MUSI --- hyperspectral --- video --- imaging --- coastal dynamics --- moving vehicle imaging --- bi-directional reflectance distribution function (BRDF) --- hemispherical conical reflectance factor (HCRF) --- stereo imaging --- digital elevation model --- Virginia Coast Reserve Long Term Ecological Research (VCR LTER) --- Hyperspectral imaging --- painting samples --- retouching pigments --- watercolours --- multivariate analysis --- potatoes --- sprouting --- primordial leaf count --- hyperspectral imaging --- spectroscopy --- fusion --- wavelength selection --- PLSR --- interval partial least squares --- deep learning --- hyperspectral imaging --- neural networks --- machine learning --- image processing --- hyperspectral imaging --- medical imaging by HSI --- HSI for biology --- remote sensing --- hyperspectral microscopy --- fluorescence hyperspectral imaging --- Raman hyperspectral imaging --- infrared hyperspectral imaging --- statistical methods for HSI --- hyperspectral data mining and compression --- statistical methods for HSI --- hyperspectral data mining and compression

Entropy in Image Analysis

Author:
ISBN: 9783039210923 / 9783039210930 Year: Pages: 456 DOI: 10.3390/books978-3-03921-093-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Image analysis is a fundamental task for extracting information from images acquired across a range of different devices. Since reliable quantitative results are requested, image analysis requires highly sophisticated numerical and analytical methods—particularly for applications in medicine, security, and remote sensing, where the results of the processing may consist of vitally important data. The contributions to this book provide a good overview of the most important demands and solutions concerning this research area. In particular, the reader will find image analysis applied for feature extraction, encryption and decryption of data, color segmentation, and in the support new technologies. In all the contributions, entropy plays a pivotal role.

Keywords

image retrieval --- multi-feature fusion --- entropy --- relevance feedback --- chaotic system --- image encryption --- permutation-diffusion --- SHA-256 hash value --- dynamic index --- entropy --- keyframes --- Shannon’s entropy --- sign languages --- video summarization --- video skimming --- image encryption --- multiple-image encryption --- two-dimensional chaotic economic map --- security analysis --- image encryption --- chaotic cryptography --- cryptanalysis --- chosen-plaintext attack --- image information entropy --- blind image quality assessment (BIQA) --- information entropy, natural scene statistics (NSS) --- Weibull statistics --- discrete cosine transform (DCT) --- ultrasound --- hepatic steatosis --- Shannon entropy --- fatty liver --- metabolic syndrome --- multi-exposure image fusion --- texture information entropy --- adaptive selection --- patch structure decomposition --- image encryption --- time-delay --- random insertion --- information entropy --- chaotic map --- uncertainty assessment --- deep neural network --- random forest --- Shannon entropy --- positron emission tomography --- reconstruction --- field of experts --- additive manufacturing --- 3D prints --- 3D scanning --- image entropy --- depth maps --- surface quality assessment --- machine vision --- image analysis --- Arimoto entropy --- free-form deformations --- normalized divergence measure --- gradient distributions --- nonextensive entropy --- non-rigid registration --- pavement --- macrotexture --- 3-D digital imaging --- entropy --- decay trend --- discrete entropy --- infrared images --- low contrast --- multiscale top-hat transform --- image encryption --- DNA encoding --- chaotic cryptography --- cryptanalysis --- image privacy --- computer aided diagnostics --- colonoscopy --- Rényi entropies --- structural entropy --- spatial filling factor --- binary image --- Cantor set --- Hénon map --- Minkowski island --- prime-indexed primes --- Ramanujan primes --- Kapur’s entropy --- color image segmentation --- whale optimization algorithm --- differential evolution --- hybrid algorithm --- Otsu method --- image encryption --- dynamic filtering --- DNA computing --- 3D Latin cube --- permutation --- diffusion --- fuzzy entropy --- electromagnetic field optimization --- chaotic strategy --- color image segmentation --- multilevel thresholding --- contrast enhancement --- sigmoid --- Tsallis statistics --- q-exponential --- q-sigmoid --- q-Gaussian --- ultra-sound images --- person re-identification --- image analysis --- hash layer --- quantization loss --- Hamming distance --- cross-entropy loss --- image entropy --- Shannon entropy --- generalized entropies --- image processing --- image segmentation --- medical imaging --- remote sensing --- security

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 / 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 / 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (4)


Year
From To Submit

2019 (4)