Search results: Found 10

Listing 1 - 10 of 10
Sort by
Implantable Microdevices

Authors: ---
ISBN: 9783039216604 9783039216611 Year: Pages: 132 DOI: 10.3390/books978-3-03921-661-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Implantable microdevices, providing accurate measurement of target analytes in animals and humans, have always been important in biological science, medical diagnostics, clinical therapy, and personal healthcare. Recently, there have been increasing unmet needs for developing high-performance implants that are small, minimally-invasive, biocompatible, long-term stable, and cost-effective. Therefore, the aim of this Special Issue is to bring together state-of-the-art research and development contributions that address key challenges and topics related to implantable microdevices. Applications of primary interest include, but are not limited to, miniaturized optical sensing and imaging tools, implantable sensors for detecting biochemical species and/or metabolites, transducers for measuring biophysical quantities (e.g., pressure and/or strain), and neural prosthetic devices.

Tissue Engineering and Regenerative Nanomedicine

Authors: ---
ISBN: 9783039216567 9783039216574 Year: Pages: 126 DOI: 10.3390/books978-3-03921-657-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

[This book focus on the most recent advances related to the design and processing methods of different nanobiomaterials, films, and fibers; surface functionalization strategies, including biological performance assessment and cytocompatibility; and their applications in tissue engineering strategies.]

Microbial Biofilms in Healthcare: Formation, Prevention and Treatment

Author:
ISBN: 9783039284108 9783039284115 Year: Pages: 166 DOI: 10.3390/books978-3-03928-411-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Biofilms are ubiquitous and their presence in industry can lead to production losses. However, nowhere do biofilms impact human health and welfare as much as those that are found contaminating the healthcare environment, surgical instruments, equipment, and medical implantable devices. Approximately 70% of healthcare-associated infections are due to biofilm formation, resulting in increased patient morbidity and mortality. Biofilms formed on medical implants are recalcitrant to antibiotic treatment, which leaves implant removal as the principal treatment option. In this book, we investigate the role of biofilms in breast and dental implant disease and cancer. We include in vitro models for investigating treatment of chronic wounds and disinfectant action against Candida sp. Also included are papers on the most recent strategies for treating biofilm infection ranging from antibiotics incorporated into bone void fillers to antimicrobial peptides and quorum sensing.

Tribological Performance of Artificial Joints

Authors: ---
ISBN: 9783039210787 9783039210794 Year: Pages: 178 DOI: 10.3390/books978-3-03921-079-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Surgery
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of the implants could be adversely affected due to the loss of materials in the form of particles or ions as the bearing surfaces articulate against earch other. The consequent tissue and immune response to the wear products, remain one of the key factors of their failure. Tribology has been defined as the science and technology of interacting surfaces in relative motion and all related wear products (e.g., particles, ions, etc.). Over the last few decades, in an attempt to understand and improve joint replacement technology, the tribological performance of several material combinations have been studied experimentally and assessed clinically. In addition, research has focused on the biological effects and long term consequences of wear products. Improvements have been made in manufacturing processes, precision engineering capabilities, device designs and materials properties in order to minimize wear and friction and maximize component longevity in vivo.

Selected Papers from the 9th Symposium on Micro-Nano Science and Technology on Micromachines

Authors: --- ---
ISBN: 9783039216963 9783039216970 Year: Pages: 170 DOI: 10.3390/books978-3-03921-697-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents selected papers from the 8th

Keywords

vibration-induced flow --- micro-pillar --- numerical analysis --- micro-PIV --- acoustofluidics --- microscale thermophoresis --- multiphase flow --- microfluidic channels --- nano/microparticle separation --- micro-electro-mechanical-systems (MEMS) technologies --- magneto-impedance sensor --- thin-film --- high frequency --- logarithmic amplifier --- nondestructive inspection --- microfluidics --- biofabrication --- adipose tissue --- lipolysis --- tactile display --- thermal tactile display --- thermal sensation --- thermal conductivity --- liquid metal --- flexible device --- stretchable electronic substrate --- kirigami structure --- mechanical metamaterials --- surface mounting --- flexible electronic device --- contact resistance --- contact pressure --- myoblast --- skeletal muscle --- core-shell hydrogel fiber --- cyclic stretch --- engineered muscle --- laser direct writing --- femtosecond laser --- glyoxylic acid Cu complex --- reduction --- Cu micropattern --- near-infrared --- spectroscopy --- surface plasmon resonance --- Schottky barrier --- grating --- Si --- connector --- artificial blood vessel --- medical device --- blood coagulation --- implant --- artificial kidney --- biocompatible --- 4D printing --- 3D printing --- stimuli-responsive hydrogel --- electrical impedance measurement --- three-dimensional cell culture --- adipocyte --- lipid droplet --- 3T3-L1 --- functional surface --- condensation --- molecular dynamics --- wettability --- nanoscale structure --- n/a

Self-Organizing Nanovectors for Drug Delivery

Authors: ---
ISBN: 9783039284283 / 9783039284290 Year: Pages: 186 DOI: 10.3390/books978-3-03928-429-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nanomedicine represents one of the most investigated areas in the last two decades in the field of pharmaceutics. Several nanovectors have been developed and a growing number of products have been approved. It is well known that many biomaterials are able to self-organize under controlled conditions giving rise nanostructures. Polymers, lipids, inorganic materials, peptides and proteins, and surfactants are examples of such biomaterials and the self-assembling property can be exploited to design nanovectors that are useful for drug delivery. The self-organization of nanostructures is an attractive approach to preparing nanovectors, avoiding complex and high-energy-consuming preparation methods, and, in some cases, facilitating drug loading procedures. Moreover, preparations based on these biocompatible and pharmaceutical grade biomaterials allow an easy transfer from the lab to the industrial scale. This book reports ten different works, and a review, aiming to cover multiple strategies and pharmaceutical applications in the field of self-organizing nanovectors for drug delivery.

Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Product/Process Fingerprint in Micro Manufacturing

Author:
ISBN: 9783039210343 9783039210350 Year: Pages: 274 DOI: 10.3390/books978-3-03921-035-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The continuous miniaturization of products and the growing complexity of their embedded multifunctionalities necessitates continuous research and development efforts regarding micro components and related micro manufacturing technologies. Highly miniaturized systems, manufactured using a wide variety of materials, have found application in key technological fields, such as healthcare devices, micro implants, mobility, communications, optics, and micro electromechanical systems. Innovations required for the high-precision manufacturing of micro components can specifically be achieved through optimizations using post-process (i.e., offline) and in-process (i.e., online) metrology of both process input and output parameters, as well as geometrical features of the produced micro parts. However, it is of critical importance to reduce the metrology and optimization efforts, since process and product quality control can represent a significant portion of the total production time in micro manufacturing. To solve this fundamental challenge, research efforts have been undertaken in order to define, investigate, implement, and validate the so-called “product/process manufacturing fingerprint” concept. The “product manufacturing fingerprint” concept refers to those unique dimensional outcomes (e.g., surface topography, form error, critical dimensions, etc.) on the produced component that, if kept under control and within specifications, ensure that the entire micro component complies to its specifications. The “process manufacturing fingerprint” is a specific process parameter or feature to be monitored and controlled, in order to maintain the manufacture of products within the specified tolerances. By integrating both product and process manufacturing fingerprint concepts, the metrology and optimization efforts are highly reduced. Therefore, the quality of the micro products increases, with an obvious improvement in production yield. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel methodological developments and applications in micro- and sub-micro-scale manufacturing, process monitoring and control, as well as micro and sub-micro product quality assurance. Focus will be on micro manufacturing process chains and their micro product/process fingerprint, towards full process optimization and zero-defect micro manufacturing.

Keywords

micro-injection moulding --- quality assurance --- process monitoring --- micro metrology --- positioning platform --- Halbach linear motor --- commercial control hardware --- diffractive optics --- gratings --- microfabrication --- computer holography --- manufacturing signature --- process fingerprint --- Fresnel lenses --- injection compression molding --- injection molding --- micro structures replication --- confocal microscopy --- optical quality control --- uncertainty budget --- optimization --- precision injection molding --- quality control --- process monitoring --- product fingerprint --- process fingerprint --- electrical discharge machining --- electrical discharge machining (EDM) --- surface roughness --- surface integrity --- optimization --- desirability function --- satellite drop --- electrohydrodynamic jet printing --- charge relaxation time --- laser ablation --- superhydrophobic surface --- process fingerprint --- product fingerprint --- surface morphology --- artificial compound eye --- multi-spectral imaging --- lithography --- spectral splitting --- plasma-electrolytic polishing --- PeP --- surface modification --- finishing --- electro chemical machining --- ECM --- Electro sinter forging --- resistance sintering --- electrical current --- fingerprints --- electrical discharge machining --- micro drilling --- process monitoring --- quality control --- electrochemical machining (ECM) --- process control --- current monitoring --- current density --- surface roughness --- inline metrology --- haptic actuator --- impact analysis --- high strain rate effect --- damping --- 2-step analysis --- micro-grinding --- bioceramics --- materials characterisation --- dental implant --- microinjection moulding --- process fingerprints --- flow length --- quality assurance --- n/a

Biomaterials for Bone Tissue Engineering

Author:
ISBN: 9783039289653 / 9783039289660 Year: Pages: 244 DOI: 10.3390/books978-3-03928-966-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world

Keywords

Pelvis --- Bone tumor --- 3D-printed implant --- Fixation design --- von Mises stress --- dental implants --- osseointegration --- resonance frequency analysis --- biomaterials --- titanium --- powder metallurgy --- loose sintering --- finite element method --- mechanical behaviour --- bone tissue regeneration --- computed tomography --- Xenografts --- stem cell --- cartilage --- finite element --- finite-element simulation --- electric stimulation --- bone regeneration --- computational modelling --- electrically active implants --- bioelectromagnetism --- critical size defect --- maxillofacial --- minipig --- oxygen delivery --- optimization --- mass transfer --- transport --- bone tissue engineering --- computational fluid dynamics --- Lattice Boltzmann method --- scaffold design --- culturing protocol --- Lagrangian scalar tracking --- cortical bone --- damage --- finite elements --- numerical results --- adipogenesis --- bone marrow --- MSCs --- prediction marker --- bone tissue --- elastoplasticity --- finite element method --- fracture risk --- osteoporosis --- trabeculae --- trabecular bone score --- vertebra --- biomechanics --- finite element modelling --- pelvis --- bone adaptation --- musculoskeletal modelling --- bone tissue engineering --- biomaterials --- computational mechanobiology --- numerical methods in bioengineering --- Ti6Al4V scaffolds --- triply periodic minimal surfaces --- selective laser melting --- additive manufacturing --- biomaterial applications --- finite element analysis --- spark plasma sintering --- wollastonite --- human dental pulp stem cells --- substrate-mediated electrical stimulation --- direct current electric field --- osteo-differentiation --- bone morphogenesis proteins --- cortical bone --- digital image correlation --- multiscale analysis --- micromechanics --- computational mechanics --- cone beam computed tomography --- automatic segmentation --- sliding window --- 3D virtual surgical plan --- Otsu’s method --- n/a

Biomaterials and Implant Biocompatibility

Authors: ---
ISBN: 9783039282166 9783039282173 Year: Pages: 420 DOI: 10.3390/books978-3-03928-217-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The scientific advances in life sciences and engineering are constantly challenging, expanding, and redefining concepts related to the biocompatibility and safety of medical devices. New biomaterials, new products, and new testing regimes are being introduced to

Keywords

carbonate apatite --- hydroxyapatite --- ?-tricalcium phosphate --- artificial bone substitute --- crystallite size --- dissolution rate --- hybrid dog --- bone levels --- dental implants --- neck design --- soft tissue dimensions --- peri-implantitis --- biofilm --- dental implants --- in vitro model --- MSN --- biopolymer --- drug delivery system --- in vitro kinetic studies --- articular cartilage defect --- bioplolymers --- C-reactive protein --- haptoglobin --- in vivo testing --- serum amyloid A --- serum protein fractions --- sheep --- contact lens --- materials --- biomedical implant --- smart dentin grinder --- autogenous particulate dentin graft --- tooth graft --- ground teeth --- human teeth --- bone grafts --- autologous graft --- dolomitic marble --- seashell --- CaCO3 derived-calcium phosphates --- modulated synthesis set-up --- SEM --- image analysis --- pre-osteoblasts --- titanium implants --- dental implants --- antibacterial coating --- gentamicin --- silver --- zinc --- cytotoxicity --- MC3T3-E1 --- Staphylococcus aureus --- plasma chemical oxidation --- bone infection --- local drug delivery --- bone graft --- demineralized bone matrix --- gentamicin --- regeneration --- colon cancer cells --- copper ions --- hydrogel sphere --- sodium alginate --- polyethyleneimine --- surface modification --- biocompatible metals --- coating techniques --- hydroxyapatite --- real-time live-cell imaging technology --- in vitro study --- biocompatibility --- 3D printing --- flow cytometry --- adipogenic mesenchymal stem cells --- porous SHS TiNi --- biocompatibility --- rheological similarity --- corrosion resistance --- bone substitution --- superparamagnetic scaffold --- composite --- laser direct writing --- static magnetic field --- extracellular matrix mineralization --- bone tissue engineering --- three-dimensional co-culture --- osteoblast --- endothelial cell --- microfiber scaffold --- osteogenesis --- angiogenesis --- tissue engineering --- diamond nanoparticles --- fish gelatin --- adipose-derived stem cells --- biocompatibility --- spaced TiO2 nanotubes --- osteoblast --- cell adhesion and morphology --- cell proliferation --- osteogenic differentiation --- protein–polymer matrices --- nanowelding --- single-walled carbon nanotubes --- point defects --- absorption --- laser radiation --- cell membrane --- mesenchymal stem cells --- osteogenic differentiation --- lactoferrin --- polymer composite --- bioceramics --- in vitro testing --- hydroxyapatite --- angiogenesis --- osteogenesis --- signaling pathways --- microRNA --- bioceramics --- bioactive glass --- hydroxyapatite --- root canal sealer --- bioactive glass --- mechanism --- caries --- review

Listing 1 - 10 of 10
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (10)


License

CC by-nc-nd (10)


Language

english (8)

eng (2)


Year
From To Submit

2020 (4)

2019 (6)