Search results: Found 7

Listing 1 - 7 of 7
Sort by
Instrumentierte Eindringprüfung bei Hochtemperatur für die Charakterisierung bestrahlter Materialien

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731502210 Year: Volume: 37 Pages: XII, 284 p. DOI: 10.5445/KSP/1000041115 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Zur Qualifizierung von Materialien für Strukturkomponenten künftiger Fusionsreaktoren eignet sich insbesondere die Instrumentierte Eindringprüfung. Um die Betriebsbedingungen im Fusionsreaktor nachzubilden, ist ein Erhitzen strahlungsgeschädigter Proben während des Versuchs notwendig. So hatte diese Arbeit zum Ziel, eine bis dato nicht existente Anlage zur Hochtemperatur-Indentation an bestrahlten Materialien zu realisieren und Versuche bei maximal 650°C zu ermöglichen.

Crystal Indentation Hardness

Authors: --- ---
ISBN: 9783038429678 9783038429685 Year: Pages: VIII, 326
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-07-05 12:27:53
License:

Loading...
Export citation

Choose an application

Abstract

Dear Colleagues,Determinations of the indentation hardness properties of crystals have expanded to cover the full characterizations of their important elastic, plastic and cracking behaviors, particularly as accomplished with the increased measuring capabilities of nanoindentation hardness testing. No crystal structure of any bonding type is either too soft or too hard to prevent measurement with a suitable probing indenter. The current Special Issue is devoted to surveying the topic with emphasis given in a collection of reports to: (1) the diversity of crystals being tested; (2) the variety of measuring techniques; and (3) the wealth of information being obtained.Prof. Dr. Ron ArmstrongDr. Stephen WalleyProf. Dr. Wayne L. ElbanGuest Editors

Untersuchung von charakteristischen Versetzungsstrukturen und Versetzungstransportprozessen in Reibkontakten mit Versetzungsdynamik-Simulationen

Author:
ISBN: 9783731508717 Year: Pages: X, 123 p. DOI: 10.5445/KSP/1000088231 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Plastic deformation influences the properties of tribological contacts. Therefore, it is important to understand the underlying dislocation mechanisms in tribological contacts. This work focuses on the formation mechanism of prismatic dislocation structures below an asperity and dislocation transport during sliding. Three dimensional Discrete Dislocation Dynamics simulations are conducted for a cubic face centered metal.

Processing-Structure-Property Relationships in Metals

Authors: ---
ISBN: 9783039217700 / 9783039217717 Year: Pages: 240 DOI: 10.3390/books978-3-03921-771-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

titanium composites --- in situ secondary phases --- microstructure --- inductive hot pressing --- intermetallic --- bainite rail --- tempering --- retained austenite --- tensile property --- impact toughness --- cryorolling --- reduction --- ultrafine grain --- secondary recrystallization --- high strength --- microstructure inhomogeneity --- non-monotonic simple shear strains --- shear strain reversal --- severe plastic deformation --- texture inhomogeneity --- tensile properties --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- ultra-fine grain --- aging treatment --- precipitation behavior --- mechanical property --- multimodal --- AZ91 alloy --- equal channel angular pressing --- aging --- high pressure die casting --- aluminum alloy --- prediction model --- process monitoring --- static mechanical behavior --- fracture surface --- microstructure. --- casting --- Al 6061 alloys --- shrinkage --- porosity --- steering knuckles --- Al alloys --- warm working --- mechanical properties --- dental materials --- metal posts --- computer-aided design (CAD) --- image analysis --- mechanical properties --- finite element analysis --- additive manufacturing --- Al alloys --- wear --- cavitation erosion --- SEM --- microstructure --- high speed steel --- nanostructured coatings --- thin films --- FEGSEM --- tribology --- Nb tube --- caliber-rolling --- grain boundaries --- texture --- electron backscatter diffraction --- damping --- aluminum film --- grain boundary --- anelasticity --- thin aluminum sheet --- alloys --- aeronautic applications --- mechanical properties --- corrosion resistance --- EBM --- SEBM --- macro-instrumented indentation test --- property-microstructure-process relationship --- mechanical properties --- indentation hardness --- indentation modulus --- tensile properties --- Ti-6Al-4V alloy --- ?-platelet thickness --- columnar microstructure --- n/a

Sports Materials

Authors: --- --- ---
ISBN: 9783039281626 / 9783039281633 Year: Pages: 166 DOI: 10.3390/books978-3-03928-163-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Advances in materials are crucial to the development of sports equipment, from tennis rackets to skis to running shoes. Materials-driven improvements in equipment have helped athletes perform better, while enhancing safety and making sport more accessible and enjoyable. This book brings together a collection of 10 papers on the topic of sports materials, as published in a Special Issue of Applied Sciences. The papers within this book cover a range of sports, including golf, tennis, table tennis and baseball. State-of-the-art engineering techniques, such as finite element modelling, impact testing and full-field strain measurement, are applied to help further our understanding of sports equipment mechanics and the role of materials, with a view to improving performance, enhancing safety and facilitating informed regulatory decision making. The book also includes papers that describe emerging and novel materials, including auxetic materials with their negative Poisson’s ratio (fattening when stretched) and knits made of bamboo charcoal. This collection of papers should serve as a useful resource for sports engineers working in both academia and industry, as well as engineering students who are interested in sports equipment and materials.

Polymer Clay Nano-composites

Author:
ISBN: 9783039216529 / 9783039216536 Year: Pages: 246 DOI: 10.3390/books978-3-03921-653-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue focuses on the current state-of-the-art of “Polymer Clay Nano-Composites” for biomedical, anticorrosion, antibacterial, and other applications. Clay–polymer composite nanomaterials represent an emerging area of research. Loading polymers with clay particles essentially enhances the composite strength features. Of particular interest are different nano-assembly methods, such as silane mono and multilayers, polyelectrolyte layer-by-layer assembly, and others. An important development was reached for tubular and fibrous clay nanoparticles, such as halloysite, sepiolite, and imogolite. Polymer clay nanoparticles can be prepared as sheets with 1-nm thickness and width of a few hundred nm (e.g., kaolin and montmorillonite). Fibrous clays significantly reinforce the nano-composites in the assembly with biopolymers and other green polymers, leading to functional hybrid bio nano-composites. The scope of this Special Issue comprehensively includes the synthesis and characterization of polymer clay nano-composites used for several applications, including nano-clay polymer composites and hybrid nano-assemblies.

Keywords

polyimide --- graphene oxide --- composite --- mechanical properties --- indentation recovery --- AFM --- carbon fibers --- surface grafting --- halloysite nanotubes --- polymer composites --- interface --- fish gelatin --- halloysite nanotubes --- glycerol --- mechanical properties --- water resistance --- LAP --- hyaluronic acid --- doxorubicin --- CD44 receptor targeted --- sacrificial bond --- ionic network --- organic montmorillonite --- 1,2-polybutadiene --- in-situ intercalation --- clay–polymer nanocomposites --- atrazine --- radical polymerization --- hexadecyltrimethylammonium bromide --- phenyltrimethylammonium chloride --- FTIR --- TGA --- adsorption --- dental resins --- nanocomposite materials --- organically modified clays --- montmorillonite --- intercalation --- nanotechnology --- ammonium persulfate --- fuzzy optimization --- N,N?-methylenebisacrylamide --- Pareto set --- polyacrylic acid --- swelling capacity --- variable cost --- polyethylene oxide --- montmorillonite clays --- Pd catalysis --- catalytic composite --- positron annihilation --- doubly functionalized montmorillonite --- polystyrene --- soap-free emulsion polymerization --- thermal stability --- tribological property --- organo-clays --- polyamines --- clay-amine interaction mechanisms --- structure effects --- la uptake and release --- layered silicate --- sericite --- CTAB --- intercalation stability --- nanocomposites --- gelation kinetics --- sol–gel transition --- water shutoff --- silica sol --- cellulose nanofibrils --- halloysite nanotubes --- supercritical CO2 --- polystyrene foam --- blowing agent --- in situ polymerization --- attapulgite/polypyrrole nanocomposite --- halloysite nanotubes --- polysaccharide --- interfacial interactions --- reinforcing --- adsorption --- dispersion --- coatings --- whey protein isolate --- nanocomposites --- nanoclay, barrier --- morphology --- n/a

Processing-Structure-Properties Relationships in Polymers

Author:
ISBN: 9783039218806 / 9783039218813 Year: Pages: 400 DOI: 10.3390/books978-3-03921-881-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This collection of research and review papers is aimed at depicting the state of the art on the possible correlations between processing variables, obtained structure and special properties which this structure induces on the plastic part. The extraordinary capacity of plastics to modify their properties according to a particular structure is evidenced for several transformation processes and for many applications. The final common goal is to take profit of this peculiar capacity of plastics by inducing, through a suitable processing, a specific spatial organization.

Keywords

carbon nanotube --- homogeneous dispersion --- ethylene vinyl acetate --- mechanical performance --- electrical conductivity --- microencapsulation --- melamine polyphosphate --- polyurethane --- composite --- flame retardant --- biodegradable nanofibers --- PLGA --- collagen --- epinephrine --- lidocaine --- polyimide film --- linear coefficient of thermal expansion (CTE) --- copper clad laminate --- structure and properties --- polymorphism --- isotactic polypropylene --- deformation --- phase transitions --- uniaxial compression --- uniaxial tensile deformation --- temperature --- in situ X-ray --- cavitation --- indentation --- Harmonix AFM --- polymer morphology --- mechanical properties --- ultra-high molecular weight polyethylene (UHMWPE) --- microcellular injection molding --- supercritical fluid --- supercritical N2 --- supercritical CO2 --- tissue engineering and regenerative medicine --- bioresorbable polymers --- 3D printing/additive manufacturing --- fused filament fabrication/fused deposition modelling --- degradation --- physicochemical characterization --- polycaprolactone --- layered double hydroxides --- ionic liquids --- PLA --- reactive blending --- biobased films --- graphene --- nanoreinforcement --- curing rate --- epoxy microstructure --- fatigue --- composites --- critical gel --- poly(lactic acid) --- carbon black --- graphite --- polymer blend --- poly(ethylene terephthalate) --- intrinsic viscosity --- polyolefin --- compatibilizer --- isotactic polypropylene --- stress-induced phase transitions --- structural analysis --- X-ray diffraction --- polyoxymethylene (POM) --- octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (GPOSS) --- composites --- morphology --- mechanical properties --- conductive filler --- orientation --- conductive polymer composites --- foam --- model --- PLLA --- bioresorbable vascular scaffolds --- stretch blow molding --- biaxial elongation --- SAXS --- WAXS --- microfibrillar composites --- crystalline morphology --- crystallinity --- mechanical properties --- crystallisation --- morphology --- nanoparticles --- shear --- flow --- orientation --- poly(?-caprolactone) --- polyvinyl butyral --- hydrophobicity --- contact angle --- polypropylene --- atomic force microscopy --- injection molding --- mold temperature evolution --- polycaprolactone --- ultra-high molecular weight polyethylene --- incremental forming --- SPIF --- XRD --- chain orientation --- temperature sensitive --- gel --- controllable gas permeability --- breathable film --- polymer composite --- processing --- polyamide 6 --- compression molding --- polymorphism --- polyamide 6 --- injection molding --- polymorphism --- humidity --- mechanical properties

Listing 1 - 7 of 7
Sort by
Narrow your search
-->