Search results: Found 2

Listing 1 - 2 of 2
Sort by
Fast Ionic Conductors and Solid-Solid Interfaces Designed for Next Generation Solid-State Batteries

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456475 Year: Pages: 136 DOI: 10.3389/978-2-88945-647-5 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The EV Everywhere Grand Challenge requires a breakthrough in energy storage technology. State-of-the-art Li-ion technology is currently used in low volume production plug-in hybrid and niche high performance vehicles; however, the widespread adoption of electrified powertrains requires a four-fold increase in performance, 25% lower cost, and safer batteries without the possibility of combustion. One approach for this target is to develop solid-state batteries (SSBs) offering improved performance, reduced peripheral mass, and unprecedented safety. SSB could offer higher energy density, by enabling new cell designs, such as bipolar stacking, leading to reduced peripheral mass and volume. To enable SSBs, a crucial requirement is a fast-ion conducting solid electrolyte. To date, myriad solid-state electrolytes have been reported exhibiting Li ion conductivities approaching those of today’s liquid electrolyte membranes. Moreover, several new materials are reported to have wide electrochemical window and single-ion mobility. Leveraging decades of research focused on Li-based electrodes for Li-ion batteries, the discovery of new solid-state electrolytes could enable access to these electrodes; specifically, Li metal and high voltage electrodes (>5V). However, transitioning SSBs from the laboratory to EVs requires answers to fundamental questions such as: (1) how does Li-ion transport through the solid electrolyte / solid electrode interface work? (2) will solid electrolytes enable bulk-scale Li metal anode and high voltage cathodes?, and (3) how will ceramic-based cells be manufactured in large-format battery packs? The purpose of this Research Topic is to provide new insights obtained through the fundamental understanding of materials chemistry, electrochemistry, advanced analysis and computational simulations. We hope these aspects will summarize current challenges and provide opportunities for future research to develop the next generation SSBs.

Hydrides: Fundamentals and Applications

Authors: --- ---
ISBN: 9783038422099 9783038422082 Year: Pages: XVI, 252 DOI: 10.3390/books978-3-03842-209-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2017-02-20 08:56:46
License:

Loading...
Export citation

Choose an application

Abstract

The reversible elimination of hydrogen from metal hydrides serves as the basis for unique methods of energy transformation. This technology has found widespread practical utilization in applications such as hydrogen compressors, storage, and sensors, as well as batteries. Moreover, it is plausible that metal hydride technology could be utilized to provide practically viable solutions to the challenges of energy storage. For nearly two decades, an extensive, worldwide research effort has been devoted to complex metal hydrides possessing high volumetric and/or gravimetric hydrogen densities with the goal of their practical utilization as onboard hydrogen storage materials. Additionally, a significant and growing number of efforts have been devoted to developing metal hydrides as advanced sensors and ionic conductors, and for electrochemical and stationary energy storage.

Listing 1 - 2 of 2
Sort by
Narrow your search