Search results: Found 9

Listing 1 - 9 of 9
Sort by
Sustainable Territorial Management

Authors: ---
ISBN: 9783038972129 9783038972136 Year: Pages: 224 DOI: 10.3390/books978-3-03897-213-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Sciences
Added to DOAB on : 2018-09-21 09:54:53
License:

Loading...
Export citation

Choose an application

Abstract

Human development has made remarkable social and economic progress possible for most of us but has also entailed a range of serious impacts on natural resources, local communities and the economy at multiple scales. Thus, achieving sustainable territorial management that combines healthy and prosperous societies with the long-term maintenance of biodiversity and productive ecosystem services remains the biggest challenge of our modern world. This Special Issue seeks to collect a coherent set of studies on techniques and experiences (case studies) aimed at increasing the environmental, social, economic &/or institutional sustainability of landscapes and seascapes from a range of geographic and socioeconomic contexts. Ten case studies representing urban areas, rural areas (chiefly protected areas) and coastal areas from four countries in Europe and Asia by internationally renowned authors are shown.

Urban Land Systems: An Ecosystems Perspective

Authors: --- ---
ISBN: 9783038429173 9783038429180 Year: Pages: VIII, 192 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Sciences
Added to DOAB on : 2018-07-02 12:55:50
License:

Loading...
Export citation

Choose an application

Abstract

Global urbanization creates challenges towards sustainability and human well-being. Urban areas are dependent on the ecosystems beyond the city limits but also benefit from the internal urban green places. An understanding of the importance of urban ecosystem services means that urban greenery can be designedly maintained or even expanded. As cities are expected to grow at a rapid rate in the coming decades, it is important that the ecosystem perspective is understood and valued by city planners and political decision-makers. This special issue highlights some aspects related to urban sprawl dynamics and urban ecosystem management. Observations and studies presented in ten papers show that urbanization affects essential ecological, economic, and social landscape functions, whose importance is often undervalued in cities worldwide.

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Google Earth Engine Applications

Authors: ---
ISBN: 9783038978848 9783038978855 Year: Pages: 420 DOI: 10.3390/books978-3-03897-885-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.

Keywords

Google Earth Engine --- NDVI --- vegetation index --- Landsat --- remote sensing --- phenology --- surface reflectance --- cropland mapping --- cropland areas --- 30-m --- Landsat-8 --- Sentinel-2 --- Random Forest --- Support Vector Machines --- segmentation --- RHSeg --- Google Earth Engine --- Africa --- remote sensing --- semi-arid --- ecosystem assessment --- land use change --- image classification --- seasonal vegetation --- carbon cycle --- Google Earth Engine --- crop yield --- gross primary productivity (GPP) --- data fusion --- Landsat --- MODIS --- MODIS --- Random Forest --- pasture mapping --- Brazilian pasturelands dynamics --- Google Earth Engine --- crop classification --- multi-classifier --- cloud computing --- time series --- high spatial resolution --- BACI --- Enhanced Vegetation Index --- Google Earth Engine --- cloud-based geo-processing --- satellite-derived bathymetry --- image composition --- pseudo-invariant features --- sun glint correction --- empirical --- spatial error --- Google Earth Engine --- low cost in situ --- Sentinel-2 --- Mediterranean --- burn severity --- change detection --- Landsat --- dNBR --- RdNBR --- RBR --- composite burn index (CBI) --- MTBS --- lower mekong basin --- landsat collection --- suspended sediment concentration --- online application --- google earth engine --- Landsat --- Google Earth Engine --- protected area --- forest and land use mapping --- machine learning classification --- China --- temporal compositing --- image time series --- multitemporal analysis --- change detection --- cloud masking --- Landsat-8 --- Google Earth Engine (GEE) --- Google Earth Engine --- LAI --- FVC --- FAPAR --- CWC --- plant traits --- random forests --- PROSAIL --- small-scale mining --- industrial mining --- google engine --- image classification --- land-use cover change --- seagrass --- habitat mapping --- image composition --- machine learning --- support vector machines --- Google Earth Engine --- Sentinel-2 --- Aegean --- Ionian --- global scale --- soil moisture --- Soil Moisture Ocean Salinity --- Soil Moisture Active Passive --- Google Earth Engine --- drought --- cloud computing --- remote sensing --- snow hydrology --- water resources --- Google Earth Engine --- user assessment --- MODIS --- snow cover --- flood --- disaster prevention --- emergency response --- decision making --- Google Earth Engine --- land cover --- deforestation --- Brazilian Amazon --- Bayesian statistics --- BULC-U --- Mato Grosso --- spatial resolution --- Landsat --- GlobCover --- SDG --- surface urban heat island --- Geo Big Data --- Google Earth Engine --- global monitoring service --- Google Earth Engine --- web portal --- satellite imagery --- trends --- earth observation --- wetland --- Google Earth Engine --- Sentinel-1 --- Sentinel-2 --- random forest --- cloud computing --- geo-big data --- cloud computing --- big data analytics --- long term monitoring --- data archival --- early warning systems

Planning, Development and Management of Sustainable Cities

Authors: ---
ISBN: 9783038979067 9783038979074 Year: Pages: 440 DOI: 10.3390/books978-3-03897-907-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

The concept of ‘sustainable urban development’ has been pushed to the forefront of policymaking and politics as the world wakes up to the impacts of climate change and the destructive effects of the Anthropocene. Climate change has emerged to be one of the biggest challenges faced by our planet today, threatening both built and natural systems with long-term consequences, which may be irreversible. While there is a vast body of literature on sustainability and sustainable urban development, there is currently limited focus on how to cohesively bring together the vital issues of the planning, development, and management of sustainable cities. Moreover, it has been widely stated that current practices and lifestyles cannot continue if we are to leave a healthy living planet to not only the next generation, but also to the generations beyond. The current global school strikes for climate action (known as Fridays for Future) evidences this. The book advocates the view that the focus needs to rest on ways in which our cities and industries can become green enough to avoid urban ecocide. This book fills a gap in the literature by bringing together issues related to the planning, development, and management of cities and focusing on a triple-bottom-line approach to sustainability.

Keywords

spatial decision support systems --- urban planning --- sustainability indicators --- urban metabolism --- sustainable regional development --- land use governance --- regional stakeholder involvement --- precision farming (PF) --- wood fuel --- technology roadmapping (TRM) --- open innovation (OI) --- Germany --- sustainability assessment --- sustainable urban development --- neighborhood sustainability --- neighborhood sustainability assessment index --- sustainable city --- Ipoh --- Malaysia --- scaling-up strategy --- sustainable development --- local new town --- neoliberal capitalism --- Wujin --- China --- low-energy transport --- carbon --- energy consumption --- sociotechnical transition --- innovation --- cities --- United Kingdom --- sustainability --- tree --- urban forest --- forest values --- urban transport --- sustainable transport --- developing cities --- medium-sized cities --- infrastructure --- transport projects --- sustainability --- knowledge management --- practitioner perceptions --- frames --- framing processes --- low carbon cities --- visioning --- urban resilience --- sustainability --- sustainability literacy --- urban development --- public participation --- urban planning --- civic engagement --- green economy --- built environment sector --- eco-cities --- sustainable urban development --- green innovation --- low carbon economy --- socio-technical transition --- urban fire --- spatio-temporal features --- SDM, humidity --- GDP --- the fire assimilation effect --- fire inertia effect --- fire caution effect --- urban land development --- natural environmental impact --- driving forces-pressure-state-impact-policy and pattern (DPSIP) --- water supply --- demand --- time-series forecasting --- ARIMA --- urban water sustainability --- Istanbul --- ecosystem approach --- urban ecology --- eco-cities --- process-function ecology --- heat island mitigation --- urban forestry --- green infrastructure --- ecological landscape management --- sustainability index --- mixed land-use --- neighbourhood --- travel behaviour --- perception --- indicator --- stakeholder --- megacity --- co-design --- co-production --- bottom-up --- anthropogenic impact --- environmental threshold --- road grades --- heavy-duty vehicles --- emissions --- sustainable transportation --- China --- water asset management --- Gap analysis --- LOS (level of service) --- PIs (performance indicators) --- customer value --- noise pollution --- low-frequency noise --- DEFRA --- human well-being --- sustainability --- power poles --- City Biodiversity Index --- Satoyama Index --- land use mixture --- land cover --- GIS --- sustainability --- sustainable development --- sustainable urban development --- sustainable city --- sustainable urban ecosystems --- sustainability assessment --- smart cities

Sensors in Agriculture

Author:
ISBN: 9783038974123 / 9783038974130 Year: Pages: 346 DOI: 10.3390/books978-3-03897-413-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed.

Keywords

wireless sensor network (WSN) --- Wi-SUN --- vine --- mandarin orange --- thermal image --- fluorescent measurement --- X-ray fluorescence spectroscopy --- visible and near-infrared reflectance spectroscopy --- heavy metal contamination --- spectral pre-processing --- feature selection --- machine-learning --- LiDAR --- light-beam --- plant localization --- Kinect --- leaf area index --- radiative transfer model --- neural networks --- GF-1 satellite --- wide field view --- big data --- geo-information --- plant phenotyping --- grapevine breeding --- Vitis vinifera --- ambient intelligence --- wireless sensor --- fuzzy logic --- smart irrigation --- virtual organizations of agents --- CIE-Lab --- precision plant protection --- optical sensor --- weed control --- classification --- NIR hyperspectral imaging --- chemometrics analysis --- weeds --- UAS --- RPAS --- one-class --- machine learning --- remote sensing --- geoinformatics --- plant disease --- pest --- deep convolutional neural networks --- real-time processing --- detection --- hyperspectral imaging --- soil type classification --- total nitrogen --- texture features --- data fusion --- Fusarium --- near-infrared --- spectroscopy --- hulled barely --- partial least squares-discriminant analysis --- remote sensing --- precision agriculture --- crop monitoring --- data fusion --- speckle --- diffusion --- scattering --- biological sensing --- apparent soil electrical conductivity --- ECa-directed soil sampling --- electromagnetic induction --- proximal sensor --- response surface sampling --- salt tolerance --- boron tolerance --- soil mapping --- soil salinity --- spatial variability --- irrigation --- energy balance --- water management --- semi-arid regions --- on-line vis-NIR measurement --- total nitrogen --- total carbon --- spiking --- gradient boosted machines --- artificial neural networks --- random forests --- rice --- striped stem-borer --- hyperspectral imaging --- texture feature --- data fusion --- greenhouse --- wireless sensor network --- data fusion --- dynamic weight --- dataset --- agriculture --- obstacle detection --- computer vision --- cameras --- stereo imaging --- thermal imaging --- LiDAR --- radar --- object tracking --- crop area --- remote sensing image classification --- area frame sampling --- stratification --- regression estimator --- agriculture --- meat spoilage --- vegetable oil --- quality assessment --- electronic nose --- electrochemical sensors --- spectral analysis --- feature selection --- genetic algorithms --- classification --- vegetation indices --- vineyard --- diseases --- spatial data --- sensor --- data fusion --- change of support --- geostatistics --- precision agriculture --- management zones --- event detection --- back propagation model --- multivariate water quality parameters --- time-series data --- spatial-temporal model --- connected dominating set --- water supply network --- SS-OCT --- Capsicum annuum --- germination --- salt concentration --- deep learning --- clover-grass --- precision agriculture --- dry matter composition --- proximity sensing --- 3D reconstruction --- RGB-D sensor --- crop inspection platform --- water depth sensors --- soil moisture sensors --- temperature sensors --- rice field monitoring --- irrigation --- silage --- packing density --- moisture content --- compound sensor --- simultaneous measurement --- birth sensor --- bovine embedded hardware --- ambient intelligence --- virtual organizations of agents --- Fusarium --- near infrared --- discrimination --- hulled barely --- naked barley --- wheat --- dielectric probe --- apple shelf-life --- dielectric dispersion --- electronic nose --- pest scouting --- pest management --- gas sensor --- noninvasive detection --- nitrogen --- near infrared sensors --- drying temperature --- SPA-MLR --- PLS --- CARS --- hyperspectral camera --- handheld --- sensor evaluation --- case studies --- soil --- moisture --- sensor --- landslide --- rice leaves --- chromium content --- laser-induced breakdown spectroscopy --- laser wavelength --- preprocessing methods --- agricultural land --- field crops --- land cover --- photograph-grid method --- remote sensing --- data validation and calibration --- mobile app --- wireless sensor networks (WSN) --- energy efficiency --- distributed systems --- processing of sensed data --- WSN distribution algorithms --- recognition patterns --- agriculture

Sensors in Agriculture

Author:
ISBN: 9783038977445 / 9783038977452 Year: Pages: 354 DOI: 10.3390/books978-3-03897-745-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed.

Keywords

wireless sensor network (WSN) --- Wi-SUN --- vine --- mandarin orange --- thermal image --- fluorescent measurement --- X-ray fluorescence spectroscopy --- visible and near-infrared reflectance spectroscopy --- heavy metal contamination --- spectral pre-processing --- feature selection --- machine-learning --- LiDAR --- light-beam --- plant localization --- Kinect --- leaf area index --- radiative transfer model --- neural networks --- GF-1 satellite --- wide field view --- big data --- geo-information --- plant phenotyping --- grapevine breeding --- Vitis vinifera --- ambient intelligence --- wireless sensor --- fuzzy logic --- smart irrigation --- virtual organizations of agents --- CIE-Lab --- precision plant protection --- optical sensor --- weed control --- classification --- NIR hyperspectral imaging --- chemometrics analysis --- weeds --- UAS --- RPAS --- one-class --- machine learning --- remote sensing --- geoinformatics --- plant disease --- pest --- deep convolutional neural networks --- real-time processing --- detection --- hyperspectral imaging --- soil type classification --- total nitrogen --- texture features --- data fusion --- Fusarium --- near-infrared --- spectroscopy --- hulled barely --- partial least squares-discriminant analysis --- remote sensing --- precision agriculture --- crop monitoring --- data fusion --- speckle --- diffusion --- scattering --- biological sensing --- apparent soil electrical conductivity --- ECa-directed soil sampling --- electromagnetic induction --- proximal sensor --- response surface sampling --- salt tolerance --- boron tolerance --- soil mapping --- soil salinity --- spatial variability --- irrigation --- energy balance --- water management --- semi-arid regions --- on-line vis-NIR measurement --- total nitrogen --- total carbon --- spiking --- gradient boosted machines --- artificial neural networks --- random forests --- rice --- striped stem-borer --- hyperspectral imaging --- texture feature --- data fusion --- greenhouse --- wireless sensor network --- data fusion --- dynamic weight --- dataset --- agriculture --- obstacle detection --- computer vision --- cameras --- stereo imaging --- thermal imaging --- LiDAR --- radar --- object tracking --- crop area --- remote sensing image classification --- area frame sampling --- stratification --- regression estimator --- agriculture --- meat spoilage --- vegetable oil --- quality assessment --- electronic nose --- electrochemical sensors --- spectral analysis --- feature selection --- genetic algorithms --- classification --- vegetation indices --- vineyard --- diseases --- spatial data --- sensor --- data fusion --- change of support --- geostatistics --- precision agriculture --- management zones --- event detection --- back propagation model --- multivariate water quality parameters --- time-series data --- spatial-temporal model --- connected dominating set --- water supply network --- SS-OCT --- Capsicum annuum --- germination --- salt concentration --- deep learning --- clover-grass --- precision agriculture --- dry matter composition --- proximity sensing --- 3D reconstruction --- RGB-D sensor --- crop inspection platform --- water depth sensors --- soil moisture sensors --- temperature sensors --- rice field monitoring --- irrigation --- silage --- packing density --- moisture content --- compound sensor --- simultaneous measurement --- birth sensor --- bovine embedded hardware --- ambient intelligence --- virtual organizations of agents --- Fusarium --- near infrared --- discrimination --- hulled barely --- naked barley --- wheat --- dielectric probe --- apple shelf-life --- dielectric dispersion --- electronic nose --- pest scouting --- pest management --- gas sensor --- noninvasive detection --- nitrogen --- near infrared sensors --- drying temperature --- SPA-MLR --- PLS --- CARS --- hyperspectral camera --- handheld --- sensor evaluation --- case studies --- soil --- moisture --- sensor --- landslide --- rice leaves --- chromium content --- laser-induced breakdown spectroscopy --- laser wavelength --- preprocessing methods --- agricultural land --- field crops --- land cover --- photograph-grid method --- remote sensing --- data validation and calibration --- mobile app --- wireless sensor networks (WSN) --- energy efficiency --- distributed systems --- processing of sensed data --- WSN distribution algorithms --- recognition patterns --- agriculture

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972709 Year: Volume: 1 Pages: 404 DOI: 10.3390/books978-3-03897-271-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972761 Year: Volume: 2 Pages: 404 DOI: 10.3390/books978-3-03897-277-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Listing 1 - 9 of 9
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (9)


License

CC by-nc-nd (9)


Language

eng (7)

english (2)


Year
From To Submit

2019 (7)

2018 (2)