Search results: Found 4

Listing 1 - 4 of 4
Sort by
Emerging Advances in Petrophysics. Porous Media Characterization and Modeling of Multiphase Flow

Authors: --- --- ---
ISBN: 9783038977940 9783038977957 Year: Pages: 258 DOI: 10.3390/books978-3-03897-795-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Geophysics and Geomagnetism
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Due to the influence of pore-throat size distribution, pore connectivity, and microscale fractures, the transport, distribution, and residual saturation of fluids in porous media are difficult to characterize. Petrophysical methods in natural porous media have attracted great attention in a variety of fields, especially in the oil and gas industry. A wide range of research studies have been conducted on the characterization of porous media covers and multiphase flow therein. Reliable approaches for characterizing microstructure and multiphase flow in porous media are crucial in many fields, including the characterization of residual water or oil in hydrocarbon reservoirs and the long-term storage of supercritical CO2 in geological formations. This book gathers together 15 recent works to emphasize fundamental innovations in the field and novel applications of petrophysics in unconventional reservoirs, including experimental studies, numerical modeling (fractal approach), and multiphase flow modeling/simulations. The relevant stakeholders of this book are authorities and service companies working in the petroleum, subsurface water resources, air and water pollution, environmental, and biomaterial sectors.

Keywords

Wilkins equation --- non-laminar flow --- turbulence modelling --- porous media --- oil tanker --- temperature drop --- oscillating motion --- numerical simulation --- soil-water characteristic curve --- initial void ratio --- air-entry value --- fractal dimension --- fractal model --- oil properties --- diffusion coefficient --- supercritical CO2 --- Peng-Robinson equation of state (PR EOS) --- CT --- digital rock --- microfractures --- Lattice Boltzmann method --- pore-scale simulations --- tight sandstone --- pore structure --- multifractal --- classification --- Ordos Basin --- loose media --- coal --- porosity --- true density --- bulk density --- overburden pressure --- particle size --- tight conglomerate --- fracture characterization and prediction --- fractal method --- salt rock --- creep --- damage --- fractional derivative --- acoustic emission --- marine gas hydrate --- submarine landslide --- greenhouse gas emission --- lifecycle management --- hazard prevention --- multilayer reservoir --- interlayer interference --- producing degree --- seepage resistance --- wellbore multiphase flow --- inclined angle --- liquid rate --- gas rate --- pressure drawdown model with new coefficients --- base-level cycle --- pore structure --- mouth bar sand body --- Huanghua Depression --- isotopic composition --- methane --- gas hydrate --- South China Sea --- Bakken Formation --- pore structure --- controlling factors --- low-temperature nitrogen adsorption --- petrophysics --- fractal porous media --- unconventional reservoirs --- multiphase flow

Micro/Nano Devices for Blood Analysis

Authors: --- ---
ISBN: 9783039218240 / 9783039218257 Year: Pages: 174 DOI: 10.3390/books978-3-03921-825-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

Clean Energy and Fuel (Hydrogen) Storage

Authors: ---
ISBN: 9783039216307 / 9783039216314 Year: Pages: 278 DOI: 10.3390/books978-3-03921-631-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Keywords

dye-sensitized solar cells --- carbon materials --- Ag nanoparticles --- freestanding TiO2 nanotube arrays --- gas turbine engine --- lean direct injection --- four-point --- low emissions combustion --- carbonate gas reservoirs --- water invasion --- recovery factor --- aquifer size --- production rate --- hydrogen storage --- complex hydrides --- nanocatalyst --- LiNH2 --- MgH2 --- ball milling --- Li-ion batteries --- nanocomposite materials --- cathode --- anode --- binder --- separator --- ionic liquid --- vertically oriented graphene --- electrical double layers --- charge density --- capacitance --- gas storage --- material science --- rock permeability --- synthetic rock salt testing --- Klinkenberg method --- hydrogen storage systems --- hydrogen absorption --- thermochemical energy storage --- metal hydride --- magnetism --- heat transfer enhancement --- Power to Liquid --- Fischer–Tropsch --- dynamic modeling --- lab-scale --- lithium-ion batteries --- simplified electrochemical model --- state of charge estimator --- extended kalman filter --- hot summer and cold winter area --- PCM roof --- comprehensive incremental benefit --- conjugate phase change heat transfer --- lattice Boltzmann method --- large-scale wind farm --- auxiliary services compensation --- battery energy storage system --- optimal capacity --- equivalent loss of cycle life --- hydrogen storage --- porous media --- bacterial sulfate reduction --- methanogenesis --- gas loss --- diffusion --- reactive transport modeling --- PHREEQC --- energy discharge --- bubbles burst --- bubbles transportation --- crystal growth rates --- undercooling --- salt cavern --- leaching tubing --- flutter instability --- flow-induced vibration --- internal and reverse external axial flows --- thermal energy storage (TES) --- slag --- regenerator --- concentrated solar power (CSP) --- quality function deployment (QFD) --- failure mode and effect analysis (FMEA) --- thermal energy storage --- electrochemical energy storage --- hydrogen energy storage --- salt cavern energy storage

Flow and Transport Properties of Unconventional Reservoirs 2018

Authors: --- --- ---
ISBN: 9783039211166 / 9783039211173 Year: Pages: 364 DOI: 10.3390/books978-3-03921-117-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Unconventional reservoirs are usually complex and highly heterogeneous, such as shale, coal, and tight sandstone reservoirs. The strong physical and chemical interactions between fluids and pore surfaces lead to the inapplicability of conventional approaches for characterizing fluid flow in these low-porosity and ultralow-permeability reservoir systems. Therefore, new theories and techniques are urgently needed to characterize petrophysical properties, fluid transport, and their relationships at multiple scales for improving production efficiency from unconventional reservoirs. This book presents fundamental innovations gathered from 21 recent works on novel applications of new techniques and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy. Clearly, the research covered in this book is helpful to understand and master the latest techniques and theories for unconventional reservoirs, which have important practical significance for the economic and effective development of unconventional oil and gas resources.

Keywords

fracturing fluid --- rheology --- chelating agent --- viscosity --- polymer --- fluid-solid interaction --- velocity profile --- the average flow velocity --- flow resistance --- pore network model --- shale gas --- volume fracturing --- finite volume method --- production simulation --- multi-scale flow --- multi-scale fracture --- shale gas reservoir --- fractured well transient productivity --- succession pseudo-steady state (SPSS) method --- complex fracture network --- multi-scale flow --- analysis of influencing factors --- tight sandstones --- spontaneous imbibition --- remaining oil distributions --- imbibition front --- imbibition recovery --- NMR --- slip length --- large density ratio --- contact angle --- pseudo-potential model --- lattice Boltzmann method --- micro-fracture --- dissolved gas --- experimental evaluation --- reservoir depletion --- recovery factor --- tight oil --- Lucaogou Formation --- tight oil --- pore structure --- prediction by NMR logs --- tight oil reservoir --- SRV-fractured horizontal well --- multiporosity and multiscale --- flow regimes --- productivity contribution degree of multimedium --- equilibrium permeability --- non-equilibrium permeability --- matrix–fracture interaction --- effective stress --- coal deformation --- porous media --- non-linear flow --- conformable derivative --- fractal --- hydraulic fracturing --- tight reservoirs --- fracture diversion --- extended finite element method --- fracture network --- gas adsorption capacity --- shale reservoirs --- influential factors --- integrated methods --- sulfonate gemini surfactant --- thickener --- temperature-resistance --- clean fracturing fluid --- low-salinity water flooding --- clay mineral composition --- enhanced oil recovery --- wetting angle --- pH of formation water --- fractional diffusion --- fractal geometry --- analytical model --- shale gas reservoir --- carbonate reservoir --- petrophysical characterization --- pore types --- pore structure --- permeability --- fractal dimension --- reservoir classifications --- deep circulation groundwater --- groundwater flow --- geothermal water --- faults --- isotopes --- shale permeability --- local effect --- global effect --- matrix-fracture interactions --- nanopore --- pore structure --- shale --- tight sandstone --- mudstone --- nitrogen adsorption --- fractal --- enhanced geothermal system --- well-placement optimization --- fracture continuum method --- 0-1 programming --- unconventional reservoirs --- petrophysical characterization --- fluid transport physics

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (4)


Year
From To Submit

2019 (4)