Search results: Found 4

Listing 1 - 4 of 4
Sort by
Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 / 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Wind Turbine Aerodynamics

Author:
ISBN: 9783039215249 / 9783039215256 Year: Pages: 410 DOI: 10.3390/books978-3-03921-525-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Wind turbine aerodynamics is one of the central subjects of wind turbine technology. To reduce the levelized cost of energy (LCOE), the size of a single wind turbine has been increased to 12 MW at present, with further increases expected in the near future. Big wind turbines and their associated wind farms have many advantages but also challenges. The typical effects are mainly related to the increase in Reynolds number and blade flexibility. This Special Issue is a collection of 21 important research works addressing the aerodynamic challenges appearing in such developments. The 21 research papers cover a wide range of problems related to wind turbine aerodynamics, which includes atmospheric turbulent flow modeling, wind turbine flow modeling, wind turbine design, wind turbine control, wind farm flow modeling in complex terrain, wind turbine noise modeling, vertical axis wind turbine, and offshore wind energy. Readers from all over the globe are expected to greatly benefit from this Special Issue collection regarding their own work and the goal of enabling the technological development of new environmentally friendly and cost-effective wind energy systems in order to reach the target of 100% energy use from renewable sources, worldwide, by 2050

Keywords

H-type floating VAWT --- truss Spar floating foundation --- coupling of aerodynamics and hydrodynamics --- computational fluid dynamics --- wind farm --- complex terrain --- SCADA --- met mast measurements --- wind turbine --- simplified free vortex wake --- vortex ring --- aerodynamics --- axial steady condition --- variable pitch --- H-type VAWT --- straight blade --- DMST model --- NACA0012 --- wind energy --- power coefficient --- tip speed ratio --- wind turbine blade optimization --- computational fluid dynamic --- actuator disc --- wake effect --- Non-dominated Sorting Genetic Algorithm (NSGA-II) --- wind turbine airfoil --- dynamic stall --- boundary layer separation --- aerodynamic characteristics --- rotor blade optimization --- blade parametrization --- computational fluid dynamics --- OpenFOAM --- gradient-based --- adjoint approach --- wind turbine optimization --- low wind speed areas --- cost of energy --- particle swarm optimization --- dynamic stall --- pitch oscillation --- oscillating freestream --- rotational augmentation --- wind turbine --- turbulence --- super-statistics --- piezo-electric flow sensor --- ABL stability --- laminar-turbulent transition --- wind speed extrapolation --- atmospheric stability --- wind shear --- wind resource assessment --- wind turbine --- stall --- NREL Phase VI --- S809 airfoil --- MEXICO --- RANS --- wind turbine wakes --- turbulence --- actuator disk --- LES --- wind tunnel --- OpenFOAM --- wind turbine --- wind turbine design --- optimization --- blade length --- economic analysis --- typhoon --- wind turbine --- meso/microscale --- aerodynamic force --- mechanical performance --- thermography --- wind turbine blades --- defects --- image processing --- condition monitoring --- wind farm --- layout optimization --- design --- random search --- complex terrain --- airfoil design --- aerodynamic --- wind tunnel experiment --- VAWTs (Vertical axis wind turbines) --- computational fluid dynamics --- floating offshore wind turbine --- dynamic fluid body interaction --- semi-submersible platform --- OC5 DeepCWind --- wind turbine --- aerodynamics --- turbulent inflow --- Computational Fluid Dynamics --- blade element momentum theory --- actuator line method --- Fatigue Loads --- wind turbine noise source --- wind turbine noise propagation --- wind turbine wake --- n/a

Recent Advances in Urban Ventilation Assessment and Flow Modelling

Authors: ---
ISBN: 9783038978060 9783038978077 Year: Pages: 448 DOI: 10.3390/books978-3-03897-807-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains twenty-one original papers and one review paper published by internationally recognized experts in the Atmosphere Special Issue ""Recent Advances in Urban Ventilation Assessment and Flow Modelling"", years 2017–2019. The Special Issue includes contributions on recent experimental and modelling works, techniques, and developments mainly tailored to the assessment of urban ventilation on flow and pollutant dispersion in cities. The study of ventilation is of critical importance, as it addresses the capacity with which a built urban structure is capable of replacing the polluted air with ambient fresh air. Here, ventilation is recognized as a transport process that improves local microclimate and air quality and closely relates to the term “breathability”. The efficiency with which street canyon ventilation occurs depends on the complex interaction between the atmospheric boundary layer flow and the local urban morphology.The individual contributions to this Issue are summarized and categorized into four broad topics: (1) outdoor ventilation efficiency and application/development of ventilation indices, (2) relationship between indoor and outdoor ventilation, (3) effects of urban morphology and obstacles to ventilation, and (4) ventilation modelling in realistic urban districts. The results and approaches presented and proposed will be of great interest to experimentalists and modelers, and may constitute a starting point for the improvement of numerical simulations of flow and pollutant dispersion in the urban environment, for the development of simulation tools, and for the implementation of mitigation strategies.

Keywords

street canyon --- seasonal variation --- air flow --- pollutant dispersion --- pollutant removal --- natural ventilation --- residential wind environments --- building arrangements --- space pattern --- ventilation efficiency --- CFD simulation --- air change rate (ACH) --- flow and turbulence profiles --- hypothetical urban areas --- street-level ventilation --- ventilation assessment --- wind-tunnel dataset --- street vegetation --- CFD --- aerodynamic and deposition --- tree scenarios --- urban planning --- indoor-outdoor --- mass concentration --- nanoparticles --- particle number concentration (PNC) --- PM10 --- PM2.5 --- sampling --- Total Suspended Particles (TSP) --- ultrafine particles (UFP) --- urban street canyon --- wind enhancement --- architectural intervention --- water channel experiment --- CFD simulation --- passive ventilation --- street canyon --- computational fluid dynamics (CFD) --- ventilation effectiveness --- the age of air --- convective boundary layer --- LES --- street-level ventilation --- small open space --- air change rate per hour (ACH) --- concentration decay method --- urban age of air --- computational fluid dynamic (CFD) simulation --- natural ventilation --- residential building --- climate zone --- thermal comfort --- natural ventilation hour --- Japan cities --- building energy use --- inter-building effect --- highly-reflective building envelope --- BEopt analysis --- source apportionment --- data assimilation --- urban air quality modelling --- wind environment --- Natural Ventilation Potential (NVP) --- PM2.5 --- building–tree grouping patterns --- Computational Fluid Dynamics (CFD) --- LES --- ventilation --- urban planning --- dispersion --- air quality --- street canyon --- traffic tidal flow --- numerical simulation --- vehicular pollution --- non-uniform distribution of the pollution source --- on-road air quality --- traffic composition --- high emitting vehicles --- street canyon --- mobile laboratory --- CFD model --- heat loss --- optimisation --- residential building --- air quality --- carbon dioxide concentration --- ventilation system --- wind pressure coefficient --- airflow network --- multiple linear regression --- natural ventilation --- urban layout --- surrogate model --- schematic urban environment --- wind tunnel --- LES --- validation --- street canyon --- coherent structures --- road tunnel --- natural ventilation --- wind catcher --- intake fraction --- street canyon --- CFD --- Large Eddy Simulation (LES) --- urban air quality --- pedestrian exposure --- concentration fluctuation --- outdoor ventilation --- urban morphology --- building site coverage --- ventilation efficiency --- n/a

Evolutionary Computation

Authors: ---
ISBN: 9783039219285 / 9783039219292 Year: Pages: 424 DOI: 10.3390/books978-3-03921-929-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Computational intelligence is a general term for a class of algorithms designed by nature's wisdom and human intelligence. Computer scientists have proposed many computational intelligence algorithms with heuristic features. These algorithms either mimic the evolutionary processes of the biological world, mimic the physiological structure and bodily functions of the organism,

Keywords

artificial bee colony algorithm (ABC) --- cloud model --- normal cloud model --- Y conditional cloud generator --- global optimum --- evolution --- computation --- urban design --- biology --- shape grammar --- architecture --- SPEA 2 --- energy-efficient job shop scheduling --- dispatching rule --- nonlinear convergence factor --- mutation operation --- whale optimization algorithm --- particle swarm optimization --- confidence term --- random weight --- benchmark functions --- t-test --- success rates --- average iteration times --- set-union knapsack problem --- moth search algorithm --- transfer function --- discrete algorithm --- evolutionary multi-objective optimization --- convergence point --- acceleration search --- evolutionary computation --- optimization --- bat algorithm (BA) --- bat algorithm with multiple strategy coupling (mixBA) --- CEC2013 benchmarks --- Wilcoxon test --- Friedman test --- facility layout design --- single loop --- monarch butterfly optimization --- slicing tree structure --- material handling path --- integrated design --- wireless sensor networks (WSNs) --- DV-Hop algorithm --- multi-objective DV-Hop localization algorithm --- NSGA-II-DV-Hop --- first-arrival picking --- fuzzy c-means --- particle swarm optimization --- range detection --- minimum total dominating set --- evolutionary algorithm --- genetic algorithm --- local search --- constrained optimization problems (COPs) --- evolutionary algorithms (EAs) --- firefly algorithm (FA) --- stochastic ranking (SR) --- Artificial bee colony --- swarm intelligence --- elite strategy --- dimension learning --- global optimization --- DE algorithm --- ?-Hilbert space --- topology structure --- quantum uncertainty property --- numerical simulation --- whale optimization algorithm --- flexible job shop scheduling problem --- nonlinear convergence factor --- adaptive weight --- variable neighborhood search --- elephant herding optimization --- EHO --- swarm intelligence --- individual updating strategy --- large-scale --- benchmark --- diversity maintenance --- particle swarm optimizer --- entropy --- large scale optimization --- minimum load coloring --- memetic algorithm --- evolutionary --- local search --- particle swarm optimization --- large-scale optimization --- adaptive multi-swarm --- diversity maintenance --- deep learning --- convolutional neural network --- rock types --- automatic identification --- monarch butterfly optimization --- greedy optimization algorithm --- global position updating operator --- 0-1 knapsack problems

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (4)


Year
From To Submit

2019 (4)