Search results: Found 4

Listing 1 - 4 of 4
Sort by
Outstanding Topics in Ocean Optics

Authors: ---
ISBN: 9783038977049 9783038977056 Year: Pages: 454 DOI: 10.3390/books978-3-03897-705-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Oceanography
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Ocean optics is a branch of oceanography which is firmly embedded in studies of a great variety of ocean science and engineering questions. The interactive nature between radiative transfer of light and various dissolved and particulate constituents of seawater is at the core of ocean optics science and applications. The transfer of radiant solar energy has vital implications to life and climate on Earth, and the large variety of subjects of ocean optics ranges from the subtle problems of physical optics to optical remote sensing towards a better understanding of ocean biology, biogeochemistry and ecosystems and their roles in the Earth's system processes. The intention of this book is to present a collection of papers that generally share a common denominator of frontier topics in ocean optics which are unique, uncommon or outstanding in the literature, and to provide a balanced view of the extraordinary breadth of research in this field. Topics as diverse as measurements and modeling of radiative transfer, light fields, light scattering and polarization, ocean color, benthic optical properties, and the use of optics for characterizing seawater constituents are addressed in this book. The book is expected to be of interest and useful to a broad audience of professional ocean scientists, engineers and advanced students with an interest in ocean optics and applications of optical methods in oceanography.

Keywords

forward modeling --- suspended matter --- marine particles --- fractal structure --- organic carbon --- chlorophyll-a --- oceanic light field --- irradiance quartet --- apparent optical properties --- inelastic processes --- Gershun equation --- ocean euphotic zone --- phytoplankton pigments --- ocean color --- remote sensing --- MERIS --- global oceans --- light scattering --- light scattering by pure water --- light scattering by pure seawater --- anomalous properties of water --- remote-sensing reflectance --- bathymetry --- hyperspectral --- bottom mapping --- radiative transfer --- apparent optical properties --- 3D Monte Carlo numerical simulations --- downward irradiance --- upward radiance --- sea ice heterogeneity --- vertical attenuation coefficient --- melt ponds --- remote sensing --- coral reef --- sensor noise --- retrieval uncertainty --- particle dynamics --- optical properties --- suspended sediment --- phytoplankton --- PFT --- ocean colour --- satellite radiometry --- radiative transfer --- optical modelling --- vector radiative transfer --- polarization --- coupled systems --- atmosphere --- ocean --- forward modeling --- inverse problems --- marine optics --- inherent optical properties --- volume scattering function --- degree of linear polarization --- marine particles --- light scattering measurements --- LISST-VSF instrument --- ocean optics --- ocean color --- remote sensing --- radiative transfer approximation --- volume scattering function --- NASA PACE mission --- polarization --- ocean optics --- upwelling radiance distribution --- remote sensing --- remote sensing --- hyperspectral --- shallow water --- coral --- derivative --- radiative transfer --- canopy --- ocean color database --- oceanic carbon --- chromophoric dissolved organic matter --- dissolved organic carbon --- CDOM spectral slope --- ocean color remote sensing --- algorithm development --- ocean color algorithm validation --- ocean optics --- CDOM climatology --- CDOM and ENSO --- machine learning --- ocean optics --- backscattering ratio --- phytoplankton --- coated-sphere model --- bulk refractive index --- seawater component --- natural organic matter --- DOM --- FDOM --- CDOM --- Gelbstoff --- EEMS --- PARAFAC --- marine sensors --- Kallemeter --- FerryBox --- Trondheimsfjord --- Norway --- ocean optics --- light scattering --- Mueller matrix --- volume and surface integral methods

Molecular Modeling in Drug Design

Authors: ---
ISBN: 9783038976141 Year: Pages: 220 DOI: 10.3390/books978-3-03897-615-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Molecular Modeling in Drug Design that was published in Molecules

Keywords

hyperlipidemia --- squalene synthase (SQS) --- molecular modeling --- drug discovery --- Traditional Chinese Medicine --- molecular dynamics simulation --- biophenols --- natural compounds --- amyloid fibrils --- Alzheimer’s disease --- ligand–protofiber interactions --- adhesion --- FimH --- rational drug design --- molecular dynamics --- molecular docking --- ligand binding --- EphA2-ephrin A1 --- PPI inhibition --- interaction energy --- in silico screening --- adenosine --- boron cluster --- adenosine receptors --- AR ligands --- aggregation --- promiscuous mechanism --- human ecto-5?-nucleotidase --- virtual screening --- enzymatic assays --- turbidimetry --- dynamic light scattering --- docking --- solvent effect --- binding affinity --- scoring function --- molecular dynamics --- target-focused pharmacophore modeling --- density-based clustering --- structure-based drug design --- AutoGrid --- grid maps --- probe energies --- method development --- steered molecular dynamics --- all-atom molecular dynamics simulation --- resultant dipole moment --- mechanical stability --- protein-peptide interactions --- molecular dynamics --- proteins --- molecular recognition --- protein protein interactions --- artificial intelligence --- deep learning --- neural networks --- property prediction --- quantitative structure-activity relationship (QSAR) --- quantitative structure-property prediction (QSPR) --- de novo design --- adenosine receptor --- metadynamics --- extracellular loops --- allosterism --- molecular dynamics --- cosolvent molecular dynamics --- drug design --- fragment screening --- docking

Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications

Authors: ---
ISBN: 9783039218288 / 9783039218295 Year: Pages: 172 DOI: 10.3390/books978-3-03921-829-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 ?m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

Advancements in Gel Science—A Special Issue in Memory of Toyoichi Tanaka

Author:
ISBN: 9783039213436 / 9783039213443 Year: Pages: 178 DOI: 10.3390/books978-3-03921-344-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Technology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

A gel is a state of matter that consists of a three-dimensional cross-linked polymer network and a large amount of solvent. Because of their structural characteristics, gels play important roles in science and technology. The science of gels has attracted much attention since the discovery of the volume phase transition by Professor Toyoichi Tanala at MIT in 1978. MDPI planned to publish a Special Issue in Gels to celebrate the 40th anniversary of this discovery, which received submissions of 13 original papers and one review from various areas of science. We believe that readers will find this Special Issue informative as to the recent advancements of gel research and the broad background of gel science.

Keywords

gel --- thermoresponsive property --- monomer sequence --- co-crosslinking --- copolymerization --- acrylamide derivative --- swelling --- volume phase transition --- agarose gel --- compression --- solvent transport --- sucrose --- xylitol --- volume phase transition --- effects of electric charge --- swelling of thermosensitive gels --- sol-gel transition --- site-bond correlated-percolation model for polymer gelation --- gelation temperature --- cloud point temperature --- spinodal temperature --- spinodal decomposition --- janus particle --- anisotropic shape --- phase separation --- wetting --- micrometric confinement --- micropipette aspiration --- PVA gel --- gamma ray sterilization --- artificial hydrogel cartilage --- frictional property --- wear --- xerogel --- Brunauer-Emmett-Teller theory --- Barrett-Joyner-Halenda analysis --- temperature --- solids content --- drying --- solvent exchange --- microgel --- electrophoresis --- light scattering --- paint coating --- wrinkle --- swelling --- buckling --- Sephadex® (crosslinked dextran) --- crosslink density (density of crosslinks) --- ice grain --- ice crystallization during rewarming --- glassy water --- X-ray CT --- XRD --- poly(vinyl alcohol) --- chemical gel --- microcrystallite --- hydrogen bond --- swelling behavior --- hysteresis --- hydrogel --- friction --- fatigue --- wear --- fracture --- crack --- adhesion --- delamination --- poly (acryl amide) gel --- time domain reflectometry (TDR) of dielectric spectroscopy --- pulse field gradient spin echo method of nuclear magnetic resonance (PFG-NMR) --- scaling analysis --- fractal analysis --- heterogeneous gelation dynamics --- moving boundary picture --- phase transition dynamics --- kinetic coefficient --- blood coagulation --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (4)


Year
From To Submit

2019 (4)