Search results: Found 7

Listing 1 - 7 of 7
Sort by
Origin and spatiotemporal dynamics of the peroxisomal endomembrane system

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194643 Year: Pages: 148 DOI: 10.3389/978-2-88919-464-3 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

The peroxisome is an organelle with essential roles in lipid metabolism, maintenance of reactive oxygen species homeostasis, and anaplerotic replenishment of tricarboxylic acid cycle intermediates destined for mitochondria. Peroxisomes constitute a dynamic endomembrane system. The homeostatic state of this system is upheld via two pathways for assembling and maintaining the diverse peroxisomal compartments constituting it; the relative contribution of each pathway to preserving such system may vary in different organisms and under various physiological conditions. One pathway begins with the targeting of certain peroxisomal membrane proteins to an endoplasmic reticulum template and their exit from the template via pre-peroxisomal carriers; these carriers mature into metabolically active peroxisomes containing the entire complement of membrane and matrix proteins. Another pathway operates via growth and maturation of pre-existing peroxisomal precursors that do not originate from the endoplasmic reticulum; mature peroxisomes proliferate by undergoing fission. Recent studies have uncovered new roles for the peroxisomal endomembrane system in orchestrating important developmental decisions and defining organismal longevity. This Frontiers Special Topic Issue is focused on the advances in our understanding of how evolutionarily distant organisms coordinate the formation, maturation, proliferation, maintenance, inheritance and quality control of the peroxisomal endomembrane system and how peroxisomal endomembranes communicate with other cellular compartments to orchestrate complex biological processes and various developmental programs from inside the cell.

Salicylic Acid Signaling Networks

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198276 Year: Pages: 188 DOI: 10.3389/978-2-88919-827-6 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The small phenolic compound salicylic acid (SA) is critical for plant defense against a broad spectrum of pathogens. SA is also involved in multi-layered defense responses, from pathogen-associated molecular pattern triggered basal defense, resistance gene-mediated defense, to systemic acquired resistance. Recent decades have witnessed tremendous progress towards our understanding of SA-mediated signaling networks. Many genes have been identified to have direct or indirect effect on SA biosynthesis or to regulate SA accumulation. Several SA receptors have been identified and characterization of these receptors has shed light on the mechanisms of SA-mediated defense signaling, which encompass chromosomal remodeling, DNA repair, epigenetics, to transcriptional reprogramming. Molecules from plant-associated microbes have been identified, which manipulate SA levels and/or SA signaling. SA does not act alone. It engages in crosstalk with other signaling pathways, such as those mediated by other phytohormones, in an agonistic or antagonistic manner, depending on hormones and pathosystems. Besides affecting plant innate immunity, SA has also been implicated in other cellular processes, such as flowering time determination, lipid metabolism, circadian clock control, and abiotic stress responses, possibly contributing to the regulation of plant development. The multifaceted function of SA makes it critically important to further identify genes involved in SA signaling networks, understand their modes of action, and delineate interactions among the components of SA signaling networks. In addition, genetic manipulation of genes involved in SA signaling networks has also provided a promising approach to enhance disease resistance in economically important plants. This ebook collects articles in the Research Topic "Salicylic Acid Signaling Networks". For this collection we solicited reviews, perspectives, and original research articles that highlight recent exciting progress on the understanding of molecular mechanisms underlying SA-mediated defense, SA-crosstalk with other pathways and how microbes impact these events.

Hormonal and Neuroendocrine Regulation of Energy Balance

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198856 Year: Pages: 117 DOI: 10.3389/978-2-88919-885-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Alteration in adequate energy balance maintenance results in serious disturbances such as obesity and its related metabolic disorders. In Mammals, energy balance is homeostatically controlled through hormonal and neuroendocrine systems which cooperation is based on cross-talk between central and peripheral signals. The hypothalamus as well as peripheral hormones among which adipokines from adipose tissue and thyroid hormones play a crucial role in energy homeostasis. Unraveling the physiological, cellular and molecular mechanisms through which hormonal and neuroendocrine systems regulate energy balance has been a long-standing challenge in biology and is now more necessary when considering the world-wide increasing prevalence of obesity. Indeed, recognizing and understanding the biochemical and nutrient signaling pathways contributing to the nervous and endocrine integration of physiological mechanisms involved in the normal and/or abnormal regulation of energy balance is fundamental also to the development of new, effective, and targeted treatments for obesity. Recent studies have highlighted the role of hypothalamic pro-opiomelanocortin-expressing neurons in the regulation of energy homeostasis by controlling energy expenditure and food intake. This is accomplished through a precise balance of production and degradation of a-melanocyte-stimulating hormone, an anorexigenic neuropeptide which is degraded to an inactive form unable to inhibit food intake by the key enzyme prolyl carboxypeptidase (PRCP), thus suggesting that pharmacologic approaches targeting PRCP may provide a novel and effective option for the management of obesity and its associated metabolic disorders. Indeed, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Weight loss due to negative energy balance is a goal for obese subjects not always reachable by dietary caloric restriction or increased physical activity. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. Recently, it has been reported that thyroid hormone (TH)- derivatives such as 3,5-diiodothyronine and 3-iodothyronamine possess interesting biological activities, opening new perspectives in thyroid physiology and TH derivatives therapeutic usage. Moreover, several studies, focusing on the interaction between thyroid hormone (TH), the autonomic nervous system and the liver, revealed an important role for the hypothalamus in the differential effects of TH on autonomic outflow to peripheral organs controlling energy balance. This Research Topic aims to give a comprehensive and integrate view of the factors involved in the endocrine and neuroendocrine signaling in energy balance regulation to highlight their involvement into physiological processes and regulatory systems as well as their perturbation during pathological processes.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 / 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Effects of Mycotoxins on the Intestine

Authors: --- ---
ISBN: 9783038977827 9783038977834 Year: Pages: 262 DOI: 10.3390/books978-3-03897-783-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Mycotoxins are secondary metabolites produced by several fungal species. They can contaminate human food and animal feed, and have been a threat for thousands of years. The gastrointestinal tract is the first target when ingesting mycotoxin-contaminated food or feed. As unlikely as it sounds, the investigations concerning the effects of mycotoxins on the intestine are still in their early stages. This book gathers the most recent advances related to the characterization of the intestinal toxicity of mycotoxins. Substantial data assembled on the damage caused to a number of histological structures and functions of the intestine remove any remaining doubt about this organ being a primary target for the toxicity of mycotoxins. An interesting overview of the detrimental effects of mycotoxins on the gut-hosted microbiota—now regarded as a fully-fledged organ associated with the gut—is also given. Finally, outstanding contributions in this book address questions relating to the suitability of current regulations to protect against alterations of the intestine, and to the efficacy assessment of new detoxification strategies using the intestinal toxicity of mycotoxins as a relevant endpoint.

Keywords

mice --- aflatoxin B1 --- intestinal bacterial flora --- response --- Clostridium sp. WJ06 --- deoxynivalenol --- pig --- intestinal morphology --- microbial diversity --- aflatoxin M1 --- ochratoxin A --- intestinal epithelial cells --- tight junction --- permeability --- ileum --- jejunum --- deoxynivalenol --- piglet --- contaminated feed --- tight junction --- aflatoxin B1 --- small intestine --- histopathological lesions --- ultrastructural changes --- toll-like receptors --- T-2 toxin --- enteric nervous system --- pig --- vasoactive intestinal polypeptide --- mycotoxins --- zearalenone --- deoxynivalenol --- histology --- ultrastructure --- large intestine --- pig --- Claviceps --- liver --- digestive tract --- mycotoxin --- sclerotia --- ergot alkaloids --- toxicity --- deoxynivalenol --- Saccharomyces cerevisiae boulardii CNCM I-1079 --- intestine --- transcriptome --- inflammation --- oxidative stress --- lipid metabolism --- fumonisin --- microbiota --- pigs --- MiSeq 16S rDNA sequencing --- intestinal microbiota --- hydrogen-rich water --- lactulose --- Fusarium mycotoxins --- piglets --- functional oligosaccharides --- mycotoxins --- swine --- explant technique --- intestinal morphology --- goblet cells --- deoxynivalenol --- zearalenone --- pig --- colon microbiota --- Lactobacillus --- detoxification --- zearalenone --- doses --- caecal water --- genotoxicity --- pre-pubertal gilts --- atlantic salmon --- deoxynivalenol --- feed --- intestine --- PCR --- proliferating cell nuclear antigen --- suppressor of cytokine signaling --- tight junctions --- Zearalenone --- N-acetylcysteine --- SIEC02 cells --- Mitochondrial apoptosis --- n/a

Fatty Acids and Cardiometabolic Health

Authors: ---
ISBN: 9783038978909 / 9783038978916 Year: Pages: 202 DOI: 10.3390/books978-3-03897-891-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The impact of fat intake on hypercholesterolemia and related atherosclerotic cardiovascular diseases has been studied for decades. However, the current evidence base suggests that fatty acids also influences cardiometabolic diseases through other mechanisms including effects on glucose metabolism, body fat distribution, blood pressure, inflammation, and heart rate. Furthermore, studies evaluating single fatty acids have challenged the simplistic view of shared health effects within fatty acid groups categorized by degree of saturation. In addition, investigations of endogenous fatty acid metabolism, including genetic studies of fatty acid metabolizing enzymes, and the identification of novel metabolically derived fatty acids have further increased the complexity of fatty acids’ health impacts. This Special Issue aims to include original research and up-to-date reviews on genetic and dietary modulation of fatty acids, and the role and function of dietary and metabolically derived fatty acids in cardiometabolic health.

AMP-Activated Protein Kinase Signalling

Authors: ---
ISBN: 9783038976622 Year: Pages: 452 DOI: 10.3390/books978-3-03897-663-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

Starting from a kinase of interest, AMP-activated protein kinase (AMPK) has gone far beyond an average biomolecule. Being expressed in all mammalian cell types and probably having a counterpart in every eukaryotic cell, AMPK has attracted interest in virtually all areas of biological research. Structural and biophysical insights have greatly contributed to a molecular understanding of this kinase. From good old protein biochemistry to modern approaches, such as systems biology and advanced microscopy, all disciplines have provided important information. Thus, multiple links to cellular events and subcellular localizations have been established. Moreover, the crucial involvement of AMPK in human health and disease has been evidenced. AMPK accordingly has moved from an interesting enzyme to a pharmacological target. However, despite our extensive current knowledge about AMPK, the growing community is busier than ever. This book provides a snapshot of recent and current AMPK research with an emphasis on work providing molecular insight, including but not limited to novel physiological and pathological functions, or regulatory mechanisms. Up-to-date reviews and research articles are included.

Keywords

exercise --- glucose uptake --- AMP-activated protein kinase --- TBC1D4 --- AS160 --- AMP-activated protein kinase --- developmental origins of health and disease (DOHaD) --- hypertension --- kidney disease --- nutrient-sensing signals --- oxidative stress --- renin-angiotensin system --- AMPK --- autophagy --- co-expression --- microarrays --- 3T3-L1 --- adipocyte --- differentiation --- AMPK --- tight junctions --- epithelial cells --- ZO-1 --- par complex --- MDCK --- nectin-afadin --- adherent junctions --- TAK1 --- AMPK --- phosphorylation --- AMPK kinase --- endothelial nitric-oxide synthase --- vasodilation --- phenylephrine --- vasoconstriction --- endothelial cells --- ionomycin --- AMPK --- liver --- lipid metabolism --- fatty acid oxidation --- indirect calorimetry --- atrophy --- regrowth --- sirtuin 1 (SIRT1) --- peroxisome proliferator-activated receptor gamma coactivator 1-? (PGC1?) --- heat shock protein --- fiber-type --- AMPK --- monocytes --- macrophages --- differentiation --- autophagy --- AML --- MDS --- CML --- CMML --- pregnancy --- catechol-O-methyltransferase --- 2-methoxyestradiol --- preeclampsia --- gestational diabetes mellitus --- AMPK --- IL-1? --- NLRP3 --- nutrition --- dietary fatty acids --- metabolic-inflammation --- nutrigenomics --- AMPK --- LKB1 --- autophagy --- proteasome --- hypertrophy --- atrophy --- skeletal muscle --- AICAR --- mTOR --- protein synthesis --- AMPK --- epigenetics --- chromatin remodeling --- histone modification --- DNA methylation --- medulloblastoma --- sonic hedgehog --- AMPK --- AMP-activated protein kinase (AMPK) --- spermatozoa --- motility --- mitochondria --- membranes --- signaling --- stress --- assisted reproduction techniques --- AMP-activated protein kinase --- epigenetics --- protein acetylation --- KATs --- HDACs --- acetyl-CoA --- NAD+ --- AMP-activated protein kinase --- glycogen --- exercise --- metabolism --- cellular energy sensing --- energy utilization --- liver --- skeletal muscle --- metabolic disease --- glycogen storage disease --- resveratrol --- AMPK --- hepatocyte --- liver --- steatosis --- transporter --- carrier --- pump --- membrane --- energy deficiency --- AMPK --- infection --- mycobacteria --- host defense --- energy metabolism --- AMPK --- activation loop --- AID --- ?-linker --- ?-linker --- CBS --- LKB1 --- CaMKK2 --- ?RIM --- hypothalamus --- adenosine monophosphate-activated protein kinase --- adipose tissue --- food intake --- adaptive thermogenesis --- beiging --- AMPK --- HDAC4/5 --- p70S6K --- MyHC I(?), motor endplate remodeling --- soleus muscle --- mechanical unloading --- hindlimb suspension --- AMPK --- synaptic activation --- PKA --- CREB --- soluble Adenylyl cyclase --- Immediate early genes --- transcription --- AMPK --- autophagy --- metabolism --- mTOR --- ULK --- AMP-activated protein kinase --- protein kinase B --- Akt --- insulin signalling --- A769662 --- endothelial function --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search