Search results: Found 4

Listing 1 - 4 of 4
Sort by
Neurodegeneration: From Genetics to Molecules

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450206 Year: Pages: 264 DOI: 10.3389/978-2-88945-020-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Chronic degenerative diseases are one of the major public health problems, particularly those affecting the nervous system. They are characterized by the degeneration of specific cell populations that include several pathologies which contribute significantly to morbidity and mortality in the elderly population. Therefore, in recent years, the study of neuroscience has gained significant importance. Most of these neurodegenerative disorders are the result of a complex interaction between genetic and environmental factors that generate progression and can even determine its severity. The presence of mutations in genes as LRRK2, SNCA, PARK7, PARK2 or PINK1 is associated with Parkinson's disease. Mutations in genes such as APP, PS1 and PS2 are associated with familial Alzheimer's disease; while HTT gene mutations are the cause of Huntington's disease. In most cases, this condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. It is known that these mutations can also alter the proteins function; however, it has not yet been possible to fully understand how some genetic changes cause the disease or influence the risk of developing these disorders. Most symptoms seen in these conditions occurs when specific nerve cells are damaged or die generating a loss in brain communication. Also many of these mutations generate aggregation of intracellular or extracellular proteins affecting cell function and eventually causing neuronal death. It is unclear whether the presence of these aggregates play an important role in nerve cell death during the development of neurodegenerative diseases, or if they are simply part of the response of cells to the disease. Other mutations affect the mitochondrial function generating alterations in energy production and promoting the formation of unstable molecules such as free radicals. Under normal conditions, the harmful effects caused by free radicals, are offset within the cell. However, in pathological conditions, the presence of mutations can alter this process by allowing the accumulation of radicals and damaging or killing cells. On the other hand, we also know that these diseases may not have a direct genetic component, thus, the study of sporadic type neurodegenerative diseases is much more complex. Histopathological lesions as well as the cellular and molecular alterations are generally indistinguishable from familial cases. For this reason, it is important to understand the genetic and molecular mechanisms associated with this type of pathologies. In this sense, this issue aims to understand the molecular processes that occur in the brain, and how these are influenced by the environment, genetics and behavior.

Jasmonic Acid Pathway in Plants

Author:
ISBN: 9783039284887 / 9783039284894 Year: Pages: 346 DOI: 10.3390/books978-3-03928-489-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine, JA-Ile), are signaling compounds involved in the regulation of defense and development in plants. The number of articles studying on JA has dramatically increased since the 1990s. JA is recognized as a stress hormone that regulates the plant response to biotic stresses such as herbivore and pathogen attacks, as well as abiotic stresses such as wounding and ultraviolet radiation. Recent studies have remarkably progressed the understanding of the importance of JA in the life cycle of plants. JA is directly involved in many physiological processes, including stamen growth, senescence, and root growth. JA regulates production of various metabolites such as phytoalexins and terpenoids. Many regulatory proteins involved in JA signaling have been identified by screening for Arabidopsis mutants. However, much more remains to be learned about JA signaling in other plant species. This Special Issue, “Jasmonic Acid Pathway in Plants”, contains 5 review and 15 research articles published by field experts. These articles will help with understanding the crucial roles of JA in its response to the several environmental stresses and development in plants.

Keywords

albino --- aroma --- Camellia sinensis --- chloroplast --- jasmonic acid --- light-sensitive --- stress --- tea --- volatile --- Panax ginseng --- gene expression --- ginsenoside --- methyl jasmonate --- MYB transcription factor --- dammarenediol synthase --- jasmonic acid --- signaling pathway --- environmental response --- biological function --- MeJA --- priming --- rice --- proteomics --- ROS --- chlorophyll fluorescence imaging --- MAP kinase --- jasmonate --- rice bacterial blight --- salicylic acid --- grain development --- Prunus avium --- Tuscan varieties --- jasmonic acid --- lipoxygenase --- bioinformatics --- gene expression --- heterotrimeric G proteins --- AtRGS1 --- jasmonates --- endocytosis --- diffusion dynamics --- Chinese flowering cabbage --- leaf senescence --- JA --- transcriptional activation --- adventitious rooting --- auxin --- ectopic metaxylem --- ectopic protoxylem --- ethylene --- hypocotyl --- jasmonates --- nitric oxide --- xylogenesis --- transcriptional regulators --- plant development --- jasmonic acid signaling --- gene expression --- Jasmonate-ZIM domain --- JAZ repressors --- Jas domain --- TIFY --- degron --- phylogenetic analysis --- ancestral sequences --- circadian clock --- jasmonic acid --- crosstalk --- jasmonic acid --- fatty acid desaturase --- multiseeded --- msd --- grain number --- MutMap --- sorghum --- Ralstonia solanacearum --- type III effector --- jasmonic acid --- salicylic acid --- Nicotiana plants --- PatJAZ6 --- jasmonic acid (JA) signaling pathway --- Pogostemon cablin --- patchouli alcohol --- biosynthesis --- jasmonate --- salt response --- Zea mays --- ROS --- proline --- ABA biosynthesis --- jasmonic acid --- crosstalk --- gibberellic acid --- cytokinin --- auxin --- jasmonic acid --- opr3 --- stress defense --- quantitative proteomics --- abiotic stresses --- jasmonates --- JA-Ile --- JAZ repressors --- transcription factor --- signaling --- antioxidant enzyme activity --- elicitor --- methyl jasmonate --- secondary metabolite --- signal molecules --- n/a

Diet and Immune Function

Authors: --- ---
ISBN: 9783039216123 / 9783039216130 Year: Pages: 314 DOI: 10.3390/books978-3-03921-613-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Supporting initiation, development and resolution of appropriate immune responses is key to survival. Many nutrients and dietary components have been purported to have a role in supporting optimal immune function. This is vital throughout the life course, from the development and programming of the immune system in early life, to supporting immunity and reducing chronic inflammation in older people. In this special issue of Nutrients, we examine the evidence for the role of diet and dietary components in promoting protective immunity.

Keywords

inflammation --- toll-like receptor 4 --- obesity --- fatty acids --- protein hydrolysate --- bioactive peptide --- immunomodulation --- Toll-like receptor --- functional foods --- zinc --- sepsis --- biomarker --- supplementation --- homeostasis --- human milk oligosaccharides --- intestinal immune system --- microbiota --- fermented milk --- Th1/Th17 response --- inflammatory process --- growth factors --- breast milk --- immunonutrition --- cytokines --- lymphocytes --- selenocysteine --- macrophage --- T cell --- antibody --- inflammation --- cancer --- adults --- age-related immunity --- deficiency --- elderly --- immunosenescence --- infants --- infection --- micronutrients --- older people --- nutrition --- amino acids --- leukocytes --- skeletal muscle --- gut --- liver --- anorexia nervosa --- inflammatory markers --- inflammation --- cytokines --- chemokines --- adhesion molecules --- carbohydrates --- fiber --- food structure --- formulation --- plant --- microbiota --- inflammation --- metabolism --- nutrition guidelines --- vitamin E --- macrophages --- T cells --- dendritic cells --- immunomodulation --- infection --- polyphenols --- immune system --- inflammation --- molecular mechanisms --- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) --- arachidonic acid --- mitogen-activated protein Kinase (MAPK) --- cytokines --- oxidative stress --- reactive oxygen species (ROS) --- cyclooxygenase (COX) --- nitric oxide synthase (NOS) --- lipoxygenase (LOX) --- superoxide dismutase (SOD) --- inhibitor of kappa kinase (IKK) --- extra-cellular signal regulated kinases (ERK) --- cancer --- anti-inflammation --- anti-tumorigenic --- chronic inflammatory conditions --- macrophages --- T helper 1 (Th1) --- Th17 --- Treg --- vitamin D --- immune system --- gut microbiota --- autoimmune diseases --- T cells --- weaning --- oligosaccharides --- non-digestible carbohydrates --- metabolites --- gut barrier --- tolerance --- nutrition --- immunity --- macronutrients --- micronutrients --- microbiome --- life course --- probiotic --- prebiotic --- inflammation

Kidney Inflammation, Injury and Regeneration

Authors: --- ---
ISBN: 9783039285389 / 9783039285396 Year: Pages: 496 DOI: 10.3390/books978-3-03928-539-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Acute kidney injury (AKI) is still associated with high morbidity and mortality incidence rates, and also bears an elevated risk of subsequent chronic kidney disease. Although the kidney has a remarkable capacity for regeneration after injury and may recover completely depending on the type of renal lesions, the options for clinical intervention are restricted to fluid management and extracorporeal kidney support. The development of novel therapies to prevent AKI, to improve renal regeneration capacity after AKI, and to preserve renal function is urgently needed. The Special Issue covers research articles that investigated the molecular mechanisms of inflammation and injury during different renal pathologies, renal regeneration, diagnostics using new biomarkers, and the effects of different stimuli like medication or bacterial components on isolated renal cells or in vivo models. The Special Issue contains important reviews that consider the current knowledge of cell death and regeneration, inflammation, and the molecular mechanisms of kidney diseases. In addition, the potential of cell-based therapy approaches that use mesenchymal stromal/stem cells or their derivates is summarized. This edition is complemented by reviews that deal with the current data situation on other specific topics like diabetes and diabetic nephropathy or new therapeutic targets.

Keywords

kidney injury --- alport syndrome --- modifier gene --- nephrin --- podocin --- glomerular basement membrane --- slit diaphragm --- focal segmental glomerulosclerosis --- inflammatory bowel disease (IBD) --- DSS-colitis --- glomerular filtration barrier (GFB) --- type IV collagen --- type I collagen --- type V collagen --- genotype --- IL-18 --- polymorphism --- renal cell carcinoma --- Taiwan --- mesenchymal stem cells --- acute and chronic kidney disease --- exosome --- natural products --- non-coding RNAs --- microRNAs --- long non-coding RNAs --- renal fibrosis --- biomarkers --- therapeutics targets --- rhabdomyolysis --- pigment nephropathy --- haem --- NLRP3 inflammasome --- acute kidney injury --- hypertension --- kidney --- molecular signaling --- hematuria --- inflammation --- oxidative stress --- tubular injury --- AKI --- chronic kidney disease (CKD) --- mesenchymal stromal cells --- extracellular vesicles --- acute kidney injury --- modified-MSCs --- microRNA --- mesenchymal stem cell --- mesodermal stem cell --- renal ischemia-reperfusion --- inflammation --- kidney transplantation --- microRNA --- extracellular vesicles --- exosomes --- B-cell attracting chemokine --- CXCL13 --- kidney transplantation --- allograft rejection --- T cell-mediated rejection --- diabetic nephropathy --- lysophosphatidic acid --- lysophosphatidic acid receptor --- chronic kidney injury --- kidney proximal tubule --- acute kidney failure --- signal transduction --- transcription --- CREB Regulated Transcriptional Coactivators (CRTC) --- cAMP Regulatory Element Binding Protein (CREB) --- Salt Inducible Kinase (SIK) --- Class IIa Histone Deacetylases (HDAC) --- lncRNA --- long non-coding RNA --- miRNA --- kidney --- glomerulus --- podocyte --- acute kidney injury --- AKI --- diabetic nephropathy --- diabetic kidney disease --- diabetic nephropathy --- inflammation --- signaling cascade --- ischemia-reperfusion --- acute kidney injury --- stem cell --- conditioned medium --- inflammation --- apoptosis --- necrosis --- regulated necrosis --- kidney injury --- tubular injury --- glomerular injury --- polyunsaturated fatty acids --- omega-3 fatty acid --- inflammatory maker --- C-reactive protein --- interleukin-6 --- LPS-binding protein --- fibrosis --- pericyte --- myofibroblast --- endotoxemia-induced oliguric kidney injury --- arachidonic acid --- cyclooxygenase --- lipoxygenase --- cytochrome P450 --- kidney inflammation --- therapeutic target --- obese kidney fibrosis --- endotoxemia --- ROS --- cPLA2 and COX-2 --- IgA nephropathy --- KIT assay --- KIT-IgA score --- noninvasive --- diagnostics --- prediction --- diabetic kidney diseases --- xanthine oxidase --- glomerular damage --- acute kidney injury --- chronic kidney disease --- renal progenitors --- polyploidization --- diabetic nephropathy --- diabetes mellitus --- GLP-1 receptor agonists --- SGLT2 inhibitors --- molecular mechanisms --- chemerin --- CmklR1 --- 2-kidney-1-clip --- 2k1c --- Thy1.1 nephritis --- renovascular hypertension --- renal inflammation --- renal injury --- renal fibrosis --- inflammation --- ischemia/reperfusion injury --- Farnesiferol B --- Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-?B) --- G-protein-coupled bile acid receptor (TGR5) --- renal stem cells --- differentiation --- scattered tubular cells --- papilla --- niches --- renal tubular cells --- epithelial cells --- proximal tubule --- cytotoxicity --- injury --- inflammation --- empagliflozin --- dapagliflozin --- kidney --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search