Search results:
Found 20
Listing 1 - 10 of 20 | << page >> |
Sort by
|
Choose an application
The storage and conversion of energy is one of the major scientific challenges of the decades to come, with high stakes for the environment. What new materials will allow for more efficient and “cleaner” batteries to be developed? Jean-Marie Tarascon reviews these issues and their implications for our future and that of the planet. In particular, he discusses lithium-ion technology, the contribution of nanotechnologies, and current research using bio-inspired methods to develop innovations su...
Choose an application
The model-aided cathode design for lithium ion batteries is presented, which enables a systematically minimization of loss processes and an increase of power and energy density. The cathode model is parametrized without values from literature by combining microstructure analysis via FIB/SEM tomography and electrochemical impedance spectroscopy and finally validated.
Choose an application
The energy management of battery electric vehicle is important for maximum utilisation of the battery. This book elaborates the requirements of the energy management and defines them as mathematical optimization problem. Strategies for the development process based on dynamic programming and for driving operation based on Pontryagin’s maximum principle are presented to consider all significant influences.
Choose an application
This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells and batteries, which enable shorter measurement times and improved precision in both measurement and parameter identification, and (ii) a modeling approach that is able to simulate a technically relevant system just by information gained through static and impedance measurements of laboratory size cells.
Choose an application
In order to understand the current-voltage behaviour of a Lithium-Ion Battery, its impedance needs to be investigated in the low-frequency domain. This work deals with measurement, modelling and model validation in that low-frequency domain and introduces the Distribution-Function-of-Differential-Capacity (DDC) as a new tool for investigating capacity contributions of different particle sizes and particle types inside of a Lithium-Ion Battery.
Choose an application
This Special Edition of Energies on “Energy Storage and Management for Electric Vehicles” draws together a collection of research papers that critically evaluates key areas of innovation and novelty when designing and managing the high-voltage battery system within an electrified powertrain. The addressed topics include design optimisation, mathematical modelling, control engineering, thermal management, and component sizing.
zinc–nickel single-flow battery --- equivalent circuit model --- self-discharge --- dynamic flow rate optimization --- genetic algorithm --- hybrid power system --- electric vehicle --- rule-based optimal strategy --- dynamic programming approach --- thermal modelling --- thermal behaviour --- lithium titanate oxide batteries --- optimal control --- supercapacitors --- batteries --- fuel cell --- hybrid vehicle --- battery degradation --- battery energy storage system --- charging scheme --- efficiency --- electric vehicle --- linear programming --- lithium ion battery --- operating expenses --- residential battery storage --- vehicle-to-building --- supercapacitor models --- parameter estimation --- ECE15 --- HPPC --- Simulink --- Simscape --- Matlab --- Identification --- regenerative energy --- timetable optimization --- energy storage system --- ?-constraint method --- improved artificial bee colony --- lithium-ion battery --- equivalent circuit model --- recursive least square --- adaptive forgetting factor --- parameter identification --- energy storage ageing and degradation --- life cycle assessment --- second-life energy storage applications --- Li-Sulfur batteries --- lithium-ion battery --- cell sorting --- multi-parameters sorting --- principal component analysis --- self-organizing maps clustering --- battery charging --- cycle-life --- state-of-health (SOH) --- battery cycle-life extension --- nonlinear battery model --- state of charge estimation --- lithium-ion battery --- Lipschitz nonlinear system --- Luenberger observer
Choose an application
The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid.
coupled inductor --- DC-DC converter --- high voltage gain --- ripple minimization current --- fuel cell vehicles --- state of charge (SOC) --- lithium-ion battery --- square root cubature Kalman filter (SRCKF) --- variational Bayesian approximation --- Huber’s M-estimation --- adaptive --- robust --- electric vehicle --- sustainable development --- driving cycle --- climate change --- charging approaches --- electric bus --- electric taxi --- electric vehicle --- public transportation --- smart grid --- ssustainable transport --- battery powered vehicle --- electric propulsion
Choose an application
This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.
lithium-ion battery --- fracture analysis --- peridynamics --- pressure gradient effect --- molecular dynamics simulation --- h-BN and Graphene sheets --- thermal conductance --- thermal conductivity --- two-dimensional semiconductor --- first-principles --- mechanical --- thermal --- buried gas distribution pipes --- electrofusion socket joints --- patch repair --- medium density polyethylene (MDPE) --- high density polyethylene (HDPE) --- Von Mises stress --- finite element method --- temperature variation --- flexoelectricity --- meshless method --- composite --- size effect --- level set technique --- rock mechanics --- phase field approach to fracture --- fracture of geo-materials --- cohesive zone model --- interface modeling
Choose an application
Anthropogenic greenhouse gas (GHG) emissions are dramatically influencing the environment, and research is strongly committed to proposing alternatives, mainly based on renewable energy sources. Low GHG electricity production from renewables is well established but issues of grid balancing are limiting their application. Energy storage is a key topic for the further deployment of renewable energy production. Besides batteries and other types of electrical storage, electrofuels and bioderived fuels may offer suitable alternatives in some specific scenarios. This Special Issue includes contributions on the energy conversion technologies and use, energy storage, technologies integration, e-fuels, and pilot and large-scale applications.
hybrid power system --- lithium-ion battery (LIB) --- supercapacitor (SC) --- alternative maritime power (AMP) --- bulk carrier --- PV --- probability prediction --- sparse Gaussian process regression --- least squares support vector machine --- combination method --- ship structure --- LNG-fueled ship --- green ship --- numerical analysis --- flow characteristics --- molten carbonate fuel cell system --- hybrid refinery --- power-to-gas --- biofuel --- jet fuel --- feasibility study --- cellulosic ethanol --- GHG savings --- R& --- D funding --- electric vehicles EV --- optimal sizing --- charging infrastructure --- Markov chain --- EV fleet forecasts --- decarbonization --- n/a
Choose an application
Climate change, urban air quality, and dependency on crude oil are important societal challenges. In the transportation sector especially, clean and energy efficient technologies must be developed. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have gained a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles) thanks to the advances in energy storage systems, power electronics converters (including DC/DC converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient power flow control strategies. This book is based on the Special Issue of the journal Applied Sciences on “Plug-In Hybrid Electric Vehicles (PHEVs)”. This collection of research articles includes topics such as novel propulsion systems, emerging power electronics and their control algorithms, emerging electric machines and control techniques, energy storage systems, including BMS, and efficient energy management strategies for hybrid propulsion, vehicle-to-grid (V2G), vehicle-to-home (V2H), grid-to-vehicle (G2V) technologies, and wireless power transfer (WPT) systems.
battery power --- convex optimization --- dynamic programming --- engine-on power --- plug-in hybrid electric vehicle --- simulated annealing --- electric vehicle --- open-end winding --- dual inverter --- voltage vector distribution --- power sharing --- energy management --- range-extender --- CO2 --- air quality --- mobility needs --- LCA --- Paris Agreement --- hybrid energy storage system --- lithium-ion battery --- lithium-ion capacitor --- lifetime model --- power distribution --- state of health estimation --- adaptive neuron-fuzzy inference system (ANFIS) --- group method of data handling (GMDH) --- artificial neural network (ANN) --- electric vehicles (EVs) --- capacity degradation --- lithium-ion battery --- time-delay input --- interleaved multiport converte --- multi-objective genetic algorithm --- hybrid electric vehicles --- losses model --- wide bandgap (WBG) technologies --- Energy Storage systems --- LCA --- Well-to-Wheel --- electric vehicle --- plug-in hybrid --- electricity mix --- consequential --- attributional --- marginal --- system modelling --- energy system --- meta-analysis --- parallel hybrid electric vehicle --- regenerative braking --- fuel consumption characteristics --- energy efficiency --- state of charge --- lithium polymer battery --- electric vehicle --- Plugin Hybrid electric vehicle --- Li-ion battery --- modelling --- measurements --- state of charge --- strong track filter --- modified one-state hysteresis model --- Li(Ni1/3Co1/3Mn1/3)O2 battery --- energy management strategy --- Markov decision process (MDP) --- plug-in hybrid electric vehicles (PHEVs) --- Q-learning (QL) --- reinforcement learning (RL) --- novel propulsion systems --- emerging power electronics --- including wide bandgap (WBG) technology --- emerging electric machines --- efficient energy management strategies for hybrid propulsion systems --- energy storage systems --- life-cycle assessment (LCA)
Listing 1 - 10 of 20 | << page >> |
Sort by
|