Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Remote Sensed Data and Processing Methodologies for 3D Virtual Reconstruction and Visualization of Complex Architectures

ISBN: 9783038422372 9783038422389 Year: Pages: XVIII, 584 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering
Added to DOAB on : 2016-08-26 13:37:10
License:

Loading...
Export citation

Choose an application

Abstract

In recent years, the topic of 3D reconstruction and modeling of complex architectures from remotely acquired multiple data sources has been of growing interest. This “democratization” of 3D modeling processes and the large availability of data is, however, not always followed by reliable, affordable and powerful tools for realizing photo-realistic, metric, re-usable and semantic-aware 3D products. This should be a motivation to research, design, develop and validate novel easy-to-use, ease-to-learn and a low-cost framework for 3D modeling and further understanding of virtual environments using multiple data sources, so that the whole 3D modeling community has access to an affordable, transferable, functional and usable framework of methods and tools. This challenge causes several problems that should be addressed: from improving and testing the technical capabilities of new capturing devices, to the solution of problems resultant from large image blocks, from delivering Building Information Modeling (BIM) standards in order to provide new management approaches to replacing existing visualization tools with new working experiences such as Virtual and Augmented Reality or game-engine technology.

Nanogrids, Microgrids, and the Internet of Things (IoT): Towards the Digital Energy Network

Author:
ISBN: 9783039217946 9783039217953 Year: Pages: 128 DOI: 10.3390/books978-3-03921-795-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Driven by new regulations, new market structures, and new energy resources, the smart grid has been the trigger for profound changes in the way that electricity is generated, distributed, managed, and consumed. The smart grid has raised the traditional power grid by using a two-way electricity and information flow to create an advanced, automated power supply network. However, these pioneering smart grid technologies must grow to adapt to the demands of the current digital society. In today’s digital landscape, we can access feasible data and knowledge that were merely inconceivable. This Special Issue aims to address the landscape in which smart grids are progressing, due to the advent of pervasive technologies like the Internet of Things (IoT). It will be the advanced exploitation of the massive amounts of data generated from (low-cost) IoT sensors that will become the main driver to evolve the concept of the smart grid, currently focused on infrastructure, towards the digital energy network paradigm, focused on service. Furthermore, collective intelligence will improve the processes of decision making and empower citizens. Original manuscripts focusing on state-of-the-art IoT networking and communications, M2M communications, cyberphysical system architectures, big data analytics or cloud computing applied to digital energy platforms, including design methodologies and practical implementation aspects, are welcome.

Flexible Electronics: Fabrication and Ubiquitous Integration

Author:
ISBN: 9783038978282 9783038978299 Year: Pages: 160 DOI: 10.3390/books978-3-03897-829-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Flexible Electronics platforms are increasingly used in the fields of sensors, displays, and energy conversion with the ultimate goal of facilitating their ubiquitous integration in our daily lives. Some of the key advantages associated with flexible electronic platforms are: bendability, lightweight, elastic, conformally shaped, nonbreakable, roll-to-roll manufacturable, and large-area. To realize their full potential, however, it is necessary to develop new methods for the fabrication of multifunctional flexible electronics at a reduced cost and with an increased resistance to mechanical fatigue. Accordingly, this Special Issue seeks to showcase short communications, research papers, and review articles that focus on novel methodological development for the fabrication, and integration of flexible electronics in healthcare, environmental monitoring, displays and human-machine interactivity, robotics, communication and wireless networks, and energy conversion, management, and storage.

Drones for Biodiversity Conservation and Ecological Monitoring

Authors: ---
ISBN: 9783039219803 9783039219810 Year: Pages: 176 DOI: 10.3390/books978-3-03921-981-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Unmanned aerial vehicles (UAV) have already become an affordable and cost-efficient tool to quickly map a targeted area for many emerging applications in the arena of ecological monitoring and biodiversity conservation. Managers, owners, companies, and scientists are using professional drones equipped with high-resolution visible, multispectral, or thermal cameras to assess the state of ecosystems, the effect of disturbances, or the dynamics and changes within biological communities inter alia. We are now at a tipping point on the use of drones for these type of applications over natural areas. UAV missions are increasing but most of them are testing applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important biophysical parameters in ecosystems or mapping species distributions. This Special Issue shows UAV applications contributing to a better understanding of biodiversity and ecosystem status, threats, changes, and trends. It documents the enhancement of knowledge in ecological integrity parameters mapping, long-term ecological monitoring based on drones, mapping of alien species spread and distribution, upscaling ecological variables from drone to satellite images: methods and approaches, rapid risk and disturbance assessment using drones, mapping albedo with UAVs, wildlife tracking, bird colony and chimpanzee nest mapping, habitat mapping and monitoring, and a review on drones for conservation in protected areas.

Nanomaterials for Environmental Purification and Energy Conversion

Authors: --- ---
ISBN: 9783039218141 9783039218158 Year: Pages: 264 DOI: 10.3390/books978-3-03921-815-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue, “Nanomaterials for Environmental Purification and Energy Conversion”, describes the significant and increasing role of nanomaterials in catalysis. It is believed that the most important factor for future human development could be to use nanomaterials (nanotechnology) to solve such critical issues facing humanity such as environment, water and energy. It should be also pointed out that properties of nanomaterials differ substantially from that of bulk materials of the same composition, resulting in high reactivity. Therefore, it creates new perspectives for the catalytic processes in the broad sense. This issue was mainly dedicated as a platform for the contributions from The Symposium on Nanomaterials for Environmental Purification and Energy Conversion (SNEPEC), which was held in Sapporo, Japan in winter 2018. Accordingly, this book compiles the current state-of-the-art of research in the area of novel photocatalysts and highlights current research directions in the fields of advanced oxidation technologies, material science and nanotechnology. Written by leading experts in the field of photochemistry and chemical engineering, a collection of 17 papers, including 16 research papers and one review, covers a broad range of topics focusing on the exceptional role of catalytic nanomaterials in solving environmental and energy problems of modern societies. The majority of papers present the importance of photocatalytic nanomaterials, especially for degradation of organic pollutants and inactivation of microorganisms, but there is also a strong representation of conventional catalysis, based on nanomaterials for important processes such as catalytic hydrogen production and organic synthesis.

Keywords

TiOF2 --- NaOH-modified TiOF2 --- network shape --- photocatalysis --- RhB --- chemical looping reforming of methane --- yttrium promoted oxygen carrier --- SBA-16 --- hydrogen production --- conductive cotton filter --- carbon nanotubes --- low-cost --- water purification --- gravity feed --- alcohols --- salicylic acid --- multiwalled carbon nanotubes --- synthesis gas --- titanium dioxide --- graphene --- photocatalysis --- visible light --- dyes --- Cu nanoparticles --- Cu/FTO nanocomposites --- H2 evolution --- visible light --- transfer efficiency --- chemical looping --- oxygen carrier --- hydrogen production --- narrow pore size distribution --- Fe2O3 dispersion --- texture modification --- photocatalytic reduction --- TiO2 --- anatase --- CO2 --- flue gas --- adsorption --- magnetic ZnO --- methylene blue --- photodegradation --- rectorite --- dimethyl carbonate --- carbon dioxide --- ceria nanowires --- oxygen vacancy --- Pt-Au --- XAFS --- BCLA --- zinc chromite --- photocatalysis activity --- oxalate --- humic acid --- photocatalysis --- CO2 reduction --- anatase --- polydopamine --- sensitization --- heterogeneous photocatalysis --- TiO2/Cu2O nanotubes --- anodization --- nanomaterials fabrication --- removal of microbiological pollutants --- photocatalysis --- nanocomposites --- heterojunction --- Cu2O --- urea --- polytriazine --- Z-scheme --- ionic liquids --- ionic liquid-assisted solvothermal reaction --- reaction time --- titanium dioxide --- heterogeneous photocatalysis --- visible light --- C/TiO2 --- photocatalysis --- solar radiation --- disinfection --- immobilized catalyst --- n/a

Intelligent Electronic Devices

Authors: --- ---
ISBN: 9783039289738 / 9783039289745 Year: Pages: 220 DOI: 10.3390/books978-3-03928-974-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In a modern technological society, electronic engineering and design innovations are both academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Engineers and designers must work together with a variety of other professionals in their quest to find systems solutions to complex problems. Rapid advances in science and technology have broadened the horizons of engineering while simultaneously creating a multitude of challenging problems in every aspect of modern life. Current research is interdisciplinary in nature, reflecting a combination of concepts and methods that often span several areas of mechanics, mathematics, electrical engineering, control engineering, and other scientific disciplines. In addition, the 2nd IEEE International Conference on Knowledge Innovation and Invention 2019 (IEEE ICKII 2019) was held in Seoul, South Korea, on 12–15 July, 2019. This book, “Intelligent Electronic Devices”, includes 13 excellent papers form 260 papers presented in this conference about intelligent electronic devices. The main goals of this book were to encourage scientists to publish their experimental and theoretical results in as much detail as possible and to provide new scientific knowledge relevant to the topics of electronics.

Keywords

test pattern generation --- built-in self-test --- broadcast circuit --- low cost --- negative differential resistance --- current-voltage characteristics --- multiple simple current mirror --- threshold voltage --- oscillator --- voltage-controlled oscillator --- ZnO-based nanowires --- hydrothermal method --- Eu3+ and In3+ ions --- photoluminescence properties --- mosquitoes --- Aedes aegypti --- Aedes albopictus --- secondary freeform lens device (SFLD) --- stearic --- dual-input converter --- high voltage gain --- leakage energy recycling --- galvanic isolation --- voltage clamping --- actuator --- lower limb exoskeleton --- wearable robot --- cone-beam computerized tomography (CBCT) --- as low as diagnostically acceptable (ALADA) --- selective anatomy analytic iteration reconstruction (SA2IR) --- low-dosed --- sparse projections --- diagnostic ability --- drift region --- electrostatic discharge (ESD) --- holding voltage (Vh) --- lateral diffusion MOS (LDMOS) --- transmission-line pulse system (TLP system) --- laser pointer --- electromagnetic lock --- sound recognition module --- regions with convolutional neural network (R-CNN) --- adaptive network-based fuzzy inference system (ANFIS) --- 6-DOF robot arm --- high-definition multimedia interface --- PCB layout --- electromagnetic interference --- radiation resistance --- multi-robots --- path programming --- tabu search --- action quality assessment --- human activity analysis --- skeletal feature representation --- electrical circuits and devices --- computer science and engineering --- communications and information processing --- electrostatic discharge (ESD) --- latchup (LU) --- n-channel lateral diffused MOSFET (nLDMOS) --- non-uniform conduction --- secondary breakdown current (It2) --- transmission-line pulse system (TLP system) --- brushless DC motor --- sensorless motor drive --- speed control --- 180-degree conduction

Analysis for Power Quality Monitoring

Authors: ---
ISBN: 9783039281107 / 9783039281114 Year: Pages: 210 DOI: 10.3390/books978-3-03928-111-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

We are immersed in the so-called digital energy network, continuously introducing new technological advances for a better way of life. Numerous emerging words are in the spotlight, namely: Internet of Things (IoT), Big Data, Smart Cities, Smart Grid, Industry 4.0, etc. To achieve this formidable goal, systems should work more efficiently, and this fact inevitably leads to power quality (PQ) assurance. Apart from its economic losses, a bad PQ implies serious risks for machines, and consequently for people. Many researchers are endeavoring to develop new analysis techniques, instruments, measurement methods, and new indices and norms that match and fulfil the requirements regarding the current operation of the electrical network. This book offers a compilation of the some recent advances in this field. The chapters range from computing issues to technological implementations, going through event detection strategies and new indices and measurement methods that contribute significantly to the advancement of PQ analysis. Experiments have been developed within the frames of research units and projects, and deal with real data from industry and public buildings. Human beings have an unavoidable commitment with sustainability, which implies adapting PQ monitoring techniques to our dynamic world, defining a digital and smart concept of quality for electricity.

Keywords

power system measurements --- dynamic phasor estimation --- Kalman filters --- phasor measurement --- power quality --- signal waveform compression --- higher-order statistics (HOS) --- power quality (PQ) --- computational solutions for advanced metering infrastructure (AMI) --- smart grid (SG) applications --- harmonics --- constant amplitude trend --- fourth-order statistics --- detection --- spectral kurtosis --- low-voltage DC networks --- power quality disturbances --- power quality monitoring --- DC power quality indices --- voltage ripple --- reconfigurable computing --- FPGA --- power quality --- spectral kurtosis --- digital signal processing --- embedded system --- power quality disturbance --- convolution neural network --- improved principal component analysis --- wind-grid distribution --- power quality (PQ) --- embedded microcontroller --- low cost monitor --- sensor node --- wireless sensor network --- IoT --- RMS voltage estimation --- low computational cost --- limited resources hardware --- power event detection --- energizing warning --- power quality --- voltage sags --- islanding operation --- induction machines --- modelling --- distribution networks --- power quality --- phasor measurement units --- voltage fluctuations --- flicker --- modulation --- power distribution systems --- smart grids --- dense-mesh topology --- municipal distribution network --- smart grid --- power quality monitor --- long-term --- operation analysis --- power quality (PQ) --- PQ indices and thresholds --- reliability --- sensors and instruments for PQ --- big data --- machine learning --- soft computing --- statistical signal processing --- data scalability --- data compression

Google Earth Engine Applications

Authors: ---
ISBN: 9783038978848 9783038978855 Year: Pages: 420 DOI: 10.3390/books978-3-03897-885-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

In a rapidly changing world, there is an ever-increasing need to monitor the Earth&rsquo;s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth&rsquo;s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.

Keywords

Google Earth Engine --- NDVI --- vegetation index --- Landsat --- remote sensing --- phenology --- surface reflectance --- cropland mapping --- cropland areas --- 30-m --- Landsat-8 --- Sentinel-2 --- Random Forest --- Support Vector Machines --- segmentation --- RHSeg --- Google Earth Engine --- Africa --- remote sensing --- semi-arid --- ecosystem assessment --- land use change --- image classification --- seasonal vegetation --- carbon cycle --- Google Earth Engine --- crop yield --- gross primary productivity (GPP) --- data fusion --- Landsat --- MODIS --- MODIS --- Random Forest --- pasture mapping --- Brazilian pasturelands dynamics --- Google Earth Engine --- crop classification --- multi-classifier --- cloud computing --- time series --- high spatial resolution --- BACI --- Enhanced Vegetation Index --- Google Earth Engine --- cloud-based geo-processing --- satellite-derived bathymetry --- image composition --- pseudo-invariant features --- sun glint correction --- empirical --- spatial error --- Google Earth Engine --- low cost in situ --- Sentinel-2 --- Mediterranean --- burn severity --- change detection --- Landsat --- dNBR --- RdNBR --- RBR --- composite burn index (CBI) --- MTBS --- lower mekong basin --- landsat collection --- suspended sediment concentration --- online application --- google earth engine --- Landsat --- Google Earth Engine --- protected area --- forest and land use mapping --- machine learning classification --- China --- temporal compositing --- image time series --- multitemporal analysis --- change detection --- cloud masking --- Landsat-8 --- Google Earth Engine (GEE) --- Google Earth Engine --- LAI --- FVC --- FAPAR --- CWC --- plant traits --- random forests --- PROSAIL --- small-scale mining --- industrial mining --- google engine --- image classification --- land-use cover change --- seagrass --- habitat mapping --- image composition --- machine learning --- support vector machines --- Google Earth Engine --- Sentinel-2 --- Aegean --- Ionian --- global scale --- soil moisture --- Soil Moisture Ocean Salinity --- Soil Moisture Active Passive --- Google Earth Engine --- drought --- cloud computing --- remote sensing --- snow hydrology --- water resources --- Google Earth Engine --- user assessment --- MODIS --- snow cover --- flood --- disaster prevention --- emergency response --- decision making --- Google Earth Engine --- land cover --- deforestation --- Brazilian Amazon --- Bayesian statistics --- BULC-U --- Mato Grosso --- spatial resolution --- Landsat --- GlobCover --- SDG --- surface urban heat island --- Geo Big Data --- Google Earth Engine --- global monitoring service --- Google Earth Engine --- web portal --- satellite imagery --- trends --- earth observation --- wetland --- Google Earth Engine --- Sentinel-1 --- Sentinel-2 --- random forest --- cloud computing --- geo-big data --- cloud computing --- big data analytics --- long term monitoring --- data archival --- early warning systems

Remote Sensing of Precipitation: Volume 1

Author:
ISBN: 9783039212859 9783039212866 Year: Pages: 480 DOI: 10.3390/books978-3-03921-286-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Remote Sensing of Precipitation: Volume 2

Author:
ISBN: 9783039212873 9783039212880 Year: Pages: 318 DOI: 10.3390/books978-3-03921-288-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (12)


License

CC by-nc-nd (12)


Language

english (10)

eng (2)


Year
From To Submit

2020 (5)

2019 (6)

2016 (1)