Search results: Found 7

Listing 1 - 7 of 7
Sort by
Optical antennas : linear and nonlinear excitation and emission

Author:
ISBN: 9783866447653 Year: Pages: IX, 186 p. DOI: 10.5445/KSP/1000024929 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The linear and nonlinear resonance behaviour of optical antennas (metallic nanostructures showing resonance behaviour at optical frequencies) made of gold and aluminum using electron-beam lithography is investigated. Specifically, it is of interest how the emission behaviour is changed by the coupling of two antenna arms via a small gap. Experimental techniques applied include dark-field spectroscopy and two-photon luminescence.

Replication-Competent Reporter-Expressing Viruses

ISBN: 9783038422587 9783038422594 Year: Pages: XVI, 322 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2016-10-31 16:58:45
License:

Loading...
Export citation

Choose an application

Abstract

Recombinant viruses expressing reporter fluorescent or bioluminescent proteins are an excellent option to evaluate the dynamics of viral infection progression in both cultured cells and/or validated animal models of viral infection. Reporter proteins are valid surrogates for direct detection of infected cells in vitro and in vivo, without the use of secondary methodologies to identify infected cells. By eliminating the need of secondary labeling, tractable replicating-competent, reporter-expressing viruses provide an ideal approach to monitor viral infections in real time, representing a significant advance in the study of the biology of viruses, to evaluate vaccination approaches, and to identify new therapeutics against viral infections using high-throughput screening settings. In this Special Issue “Replication-Competent Reporter-Expressing Viruses” we review replication-competent, reporter-expressing viruses belonging to different families, methods of characterization, and applications to facilitate the study of in vitro and in vivo viral infections. We also seek to discuss disadvantages and limitations associated with these reporter-expressing viruses. Finally, we provide rational future perspectives and additional avenues for the development, characterization, and applications of recombinant, reporter-expressing, competent viruses.

Molecular Magnetism of Lanthanides Complexes and Networks

Author:
ISBN: 9783038429876 9783038429883 Year: Pages: VI, 110 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biochemistry --- Biology --- Environmental Sciences
Added to DOAB on : 2018-08-20 16:50:33
License:

Loading...
Export citation

Choose an application

Abstract

Over the last ten years a fresh air has been blowing in the field of molecular magnetism with the re-introduction of lanthanides ions as spin carriers in magnetic molecules. The strong magnetic moment and huge magnetic anisotropy of lanthanide ions has enabled significant breakthroughs in magnetic blocking temperature and related phenomena. The chemical versatility of these ions is also a strong asset as easy substitution among the lanthanides series enables isotropic, anisotropic or solid-solutions of magnetic molecules. Additionally, their outstanding luminescent properties are key features in rationalizing the single-molecule magnet (SMM) behavior and paving the way toward production of multifunctional materials. In this book, selected examples of research on molecular magnetism of lanthanides complexes and networks are presented illustrating the current dynamism of this research field.

Crystal Growth of Multifunctional Borates and Related Materials

Author:
ISBN: 9783038978381 9783038978398 Year: Pages: 116 DOI: 10.3390/books978-3-03897-839-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Borate crystals are attractive for different technological applications because of their favorable physical and chemical properties like stability and high transparency, both high thermal and non-linear optical coefficients, making them ideal active media for highly efficient solid state lasers. In this Special Issue, different aspects of multifunctional borate crystals are discussed, including ortho- and oxyorthoborates and compounds with condensed anions, as well as their nonlinear optical and laser properties and piezoelectric characteristics. For this reason, complex investigations of the phase relationships in multi-component borate melts, the study of crystal growth conditions of novel high-temperature borates, and the development of the “crystallization conditions, composition, structure, and properties” concept will provide a scientific basis for growth technologies of high performance electronic and optical devices and components with a variety of industrial, medical and many other applications. In the meantime, these relationships can help to estimate the affinity of synthetic borate materials with their natural prototypes and structural analogues.

Crystal Chemistry of Zinc, Cadmium and Mercury

Author:
ISBN: 9783038976523 Year: Pages: 156 DOI: 10.3390/books978-3-03897-653-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Organic Chemistry --- Chemistry (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Crystal Chemistry of Zinc, Cadmium and Mercury that was published in Crystals

Advanced Glasses, Composites and Ceramics for High Growth Industries

Authors: --- ---
ISBN: 9783038979609 / 9783038979616 Year: Pages: 186 DOI: 10.3390/books978-3-03897-961-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Advanced Glasses, Composites and Ceramics for High-Growth Industries (CoACH) was a European Training Network (ETN) project (http://www.coach-etn.eu/) funded by the Horizon 2020 program. CoACH involved multiple actors in the innovation ecosystem for advanced materials, composed of five universities and ten enterprises in seven different European countries. The project studied the next generation of materials that could bring innovation in the healthcare, construction, and energy sectors, among others, from new bioactive glasses for bone implants to eco-friendly cements and new environmentally friendly thermoelectrics for energy conversion. The novel materials developed in the CoACH project pave the way for innovative products, improved cost competitiveness, and positive environmental impact. The present Special Issue contains 14 papers resulting from the CoACH project, showcasing the breadth of materials and processes developed during the project.

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Listing 1 - 7 of 7
Sort by
Narrow your search