Search results: Found 2

Listing 1 - 2 of 2
Sort by
Stem cells and progenitor cells in ischemic stroke - fashion or future?

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197248 Year: Pages: 156 DOI: 10.3389/978-2-88919-724-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Stroke remains one of the most devastating diseases in industrialized countries. Recanalization of the occluded arterial vessel using thrombolysis is the only causal therapy available. However, thrombolysis is limited due to severe side effects and a limited time window. As such, only a minority of patients receives this kind of therapy, showing a need for new and innovative treatment strategies. Although neuroprotective drugs have been shown to be beneficial in a variety of experimental stroke models, they ultimately failed in clinical trials. Consequently, recent scientific focus has been put on modulation of post-ischemic neuroregeneration, either via stimulation of endogenous neurogenesis or via application of exogenous stem cells or progenitor cells. Neurogenesis persists within the adult brain of both rodents and primates. As such, neural progenitor cells (NPCs) are found within distinct niches like the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus. Cerebral ischemia stimulates these astrocyte-like progenitor cells, upon which NPCs proliferate and migrate towards the site of lesion. There, NPCs partly differentiate into mature neurons, without significantly being integrated into the residing neural network. Rather, the majority of new-born cells dies within the first weeks post-stroke, leaving post-ischemic neurogenesis a phenomenon of unknown biological significance. Since NPCs do not replace lost brain tissue, beneficial effects observed in some studies after either stimulated or protected neurogenesis are generally contributed to indirect effects of these new-born cells. The precise identification of appropriated cellular mediators, however, is still elusive. How do these mediators work? Are they soluble factors or maybe even vesicular structures emanating from NPCs? What are the cues that guide NPCs towards the ischemic lesion site? How can post-ischemic neurogenesis be stimulated? How can the poor survival of NPCs be increased? In order to support post-ischemic neurogenesis, a variety of research groups have focused on application of exogenous stem/progenitor cells from various tissue sources. Among these, cultivated NPCs from the SVZ and mesenchymal stem cells (MSCs) from the bone marrow are frequently administered after induction of stroke. Although neuroprotection after delivery of stem/progenitor cells has been shown in various experimental stroke models, transplanted cells are usually not integrated in the neural network. Again, the vast amount of grafted cells dies or does not reach its target despite profound neuroprotection, also suggesting indirect paracrine effects as the cause of neuroprotection. Yet, the factors being responsible for these observations are under debate and still have to be addressed. Is there any “optimal” cell type for transplantation? How can the resistance of grafted cells against a non-favorable extracellular milieu be increased? What are the molecules that are vital for interaction between grafted cells and endogenous NPCs? The present research topic seeks to answer - at least in part - some of the aforementioned questions. Although the research topic predominantly focuses on experimental studies (and reviews alike), a current outlook towards clinical relevance is given as well.

Research of Pathogenesis and Novel Therapeutics in Arthritis

Author:
ISBN: 9783038970651 / 9783038970668 Year: Pages: 366 DOI: 10.3390/books978-3-03897-066-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Arthritis has a high prevalence globally and includes over 100 different types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. The exact etiology of arthritis remains unclear and no cure exists. Anti-inflammatory drugs are commonly used in the treatment of arthritis but are associated with significant side effects. Novel modes of therapy and additional prognostic biomarkers are urgently needed for arthritis patients. This book summarizes and discusses the global picture of the current understanding of arthritis.

Keywords

biosimilars --- Th9 lymphocytes --- rheumatoid arthritis --- infliximab --- rheumatoid arthritis --- bone erosion --- osteoblasts --- next-generation sequencing --- bioinformatics --- microRNA --- messenger RNA --- osteoarthritis --- cell signaling --- IL1? --- WNT --- antagonists --- computational modeling --- nitric oxide --- clodronate --- gene expression --- osteoarthritis --- progenitor cells --- SOX9 --- spondyloarthropathies --- inflammation --- mesenchymal stem cells --- visfatin --- IL-6 --- TNF-? --- osteoarthritis --- miR-199a-5p --- Epstein-Barr virus --- glycoprotein 42 --- rheumatoid arthritis --- shared epitope --- triptolide --- rheumatoid arthritis --- basic research --- clinical translation --- osteoarthritis (OA) --- articular cartilage --- molecular pathology --- therapeutics --- rheumatoid arthritis --- antibodies --- collagen --- glycosylation --- disease pathways --- therapy --- experimental arthritis --- TNF? --- etanercept --- infliximab --- adalimumab --- certolizumab pegol --- golimumab --- rheumatoid arthritis --- therapeutic antibody --- structure --- fraxinellone --- collagen-induced arthritis --- rheumatoid arthritis --- inflammatory arthritis --- osteoclastogenesis --- sclareol --- rheumatoid arthritis --- synovial cell --- collagen --- mice --- cytokines --- Th17 --- MAPK --- arthritis --- osteoarthritis --- rheumatoid arthritis --- small-molecule inhibitor --- chondrocytes --- tumor necrosis factor-alpha --- inflammation --- rheumatoid arthritis --- osteoarthritis --- angiogenesis --- cytokines --- chemokines --- early osteoarthritis --- articular cartilage --- proliferation --- fibroblast growth factor 2 --- mitogen activated protein kinase --- transforming growth factor ? --- SMA- and MAD-related protein --- interleukin --- nuclear factor kappa B --- miRNA --- adjuvant arthritis --- arthritis --- biomarkers --- celastrol --- inflammation --- microRNA --- miRNA --- rat --- rheumatoid arthritis --- Traditional Chinese medicine --- tripterine --- triterpenoid --- spinal fusion --- biological --- osteoblast --- osteoclast --- bisphosphonate --- parathyroid hormone --- bone morphogenetic protein --- receptor activator of nuclear factor ?B --- stem cell --- drug delivery system --- anticitrullinated peptide antibodies --- antirheumatic drug --- autoimmune --- disease-modifying --- immunology --- pathology --- rheumatoid factor --- rheumatoid arthritis --- osteoarthritis --- adipokines --- obesity --- rheumatoid arthritis --- osteoarthritis --- anti-arthritis --- biomarkers

Listing 1 - 2 of 2
Sort by
Narrow your search