Search results: Found 7

Listing 1 - 7 of 7
Sort by
Stem cells and progenitor cells in ischemic stroke - fashion or future?

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197248 Year: Pages: 156 DOI: 10.3389/978-2-88919-724-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Stroke remains one of the most devastating diseases in industrialized countries. Recanalization of the occluded arterial vessel using thrombolysis is the only causal therapy available. However, thrombolysis is limited due to severe side effects and a limited time window. As such, only a minority of patients receives this kind of therapy, showing a need for new and innovative treatment strategies. Although neuroprotective drugs have been shown to be beneficial in a variety of experimental stroke models, they ultimately failed in clinical trials. Consequently, recent scientific focus has been put on modulation of post-ischemic neuroregeneration, either via stimulation of endogenous neurogenesis or via application of exogenous stem cells or progenitor cells. Neurogenesis persists within the adult brain of both rodents and primates. As such, neural progenitor cells (NPCs) are found within distinct niches like the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus. Cerebral ischemia stimulates these astrocyte-like progenitor cells, upon which NPCs proliferate and migrate towards the site of lesion. There, NPCs partly differentiate into mature neurons, without significantly being integrated into the residing neural network. Rather, the majority of new-born cells dies within the first weeks post-stroke, leaving post-ischemic neurogenesis a phenomenon of unknown biological significance. Since NPCs do not replace lost brain tissue, beneficial effects observed in some studies after either stimulated or protected neurogenesis are generally contributed to indirect effects of these new-born cells. The precise identification of appropriated cellular mediators, however, is still elusive. How do these mediators work? Are they soluble factors or maybe even vesicular structures emanating from NPCs? What are the cues that guide NPCs towards the ischemic lesion site? How can post-ischemic neurogenesis be stimulated? How can the poor survival of NPCs be increased? In order to support post-ischemic neurogenesis, a variety of research groups have focused on application of exogenous stem/progenitor cells from various tissue sources. Among these, cultivated NPCs from the SVZ and mesenchymal stem cells (MSCs) from the bone marrow are frequently administered after induction of stroke. Although neuroprotection after delivery of stem/progenitor cells has been shown in various experimental stroke models, transplanted cells are usually not integrated in the neural network. Again, the vast amount of grafted cells dies or does not reach its target despite profound neuroprotection, also suggesting indirect paracrine effects as the cause of neuroprotection. Yet, the factors being responsible for these observations are under debate and still have to be addressed. Is there any “optimal” cell type for transplantation? How can the resistance of grafted cells against a non-favorable extracellular milieu be increased? What are the molecules that are vital for interaction between grafted cells and endogenous NPCs? The present research topic seeks to answer - at least in part - some of the aforementioned questions. Although the research topic predominantly focuses on experimental studies (and reviews alike), a current outlook towards clinical relevance is given as well.

Bioactive and Therapeutic Dental Materials

Author:
ISBN: 9783039214198 9783039214204 Year: Pages: 216 DOI: 10.3390/books978-3-03921-420-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focus principally on ions-releasing and other smart dental materials for application in preventive and restorative dentistry, as well as in endodontics in the form of adhesives, resin-based composites, pastes, varnishes, liners and dental cements. Special attention has been given to bioactive materials developed to induce cells differentiation/stimulation, hard tissue formation and exert antimicrobial actions. New innovations are necessary to continue to help reinforcing existing technologies and to introduce new paradigms for treating dental disease and restoring teeth seriously compromised by caries lesions via biomimetic and more biological operative approaches. Dental bioactive materials is arguably the latest research area in dentistry and thus the amount of new research is overwhelming. However, in this day and age of evidence based practice it important for this new information to be distilled into a practical and understandable format.

Keywords

orthodontic resin --- photocatalyst TiO2 --- antibacterial --- cariogenic --- early colonizer --- hydrophilic properties --- irradiation --- calcium silicate cements --- pulpal response --- mineralization --- calcific barrier --- inflammation --- odontoblastic layer --- resin cements --- shrinkage stress --- water sorption --- hydroscopic expansion --- photoelastic investigation --- antibacterial --- calcium --- doxycycline --- nanoparticles --- zinc --- dental composites --- antibacterial properties --- silver --- mechanical properties --- degree of conversion --- sorption --- solubility --- color stability --- mechanical properties --- nanotubes --- resin composite --- Streptococcus mutans --- triclosan --- bleaching products --- diffusion --- cytotoxicity --- dental pulp --- stem cells --- nanoporous silica --- glass-ionomer cement --- calcium --- preclinical biosafety --- bone substitute --- mesenchymal stem cells --- ?-tricalcium phosphate --- tissue engineering --- dental sealant --- resin sealant --- calcium phosphate nanoparticles --- long-term ion release --- remineralization --- ion recharge --- dentin --- desmineralization --- microtensile bond strength --- adhesion --- bioactive --- cycling mechanical stress --- dentine --- longevity --- resin-modified glass ionomer cements --- polyacrylic acid treatment --- bone regeneration --- ?-tricalcium phosphate --- calcium sulfate --- bone substitutes --- animal study --- n/a --- adhesion --- cycling mechanical stress --- dentine --- longevity --- glass-ionomer cements --- universal adhesives

The Molecular and Cellular Basis for Parkinson's Disease

Author:
ISBN: 9783039215485 9783039215492 Year: Pages: 230 DOI: 10.3390/books978-3-03921-549-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The focus on dopamine-sensitive motor symptoms, in association with the improvement of motor complications in the heterogeneous disease entity Parkinson's disease, has led to a certain standstill in research. This Special Issue provides new concepts and new ideas on the pathogenesis, genetics, and clinical maintenance of Parkinson's disease and related disorders. Not only new experimental findings, but also clinical outcomes, case series, and research on alternative, non-pharmacological therapies are included. The objective is to bridge the currently increasing gap between experimental and clinical research on Parkinson's disease and related disorders.

Keywords

epigenetics --- Parkinson’s disease --- brain --- DNA methylation --- Parkinson’s disease --- fatty acid ?-oxidation --- long-chain acylcarnitine --- Parkinson’s disease --- fatty acyls --- glycerolipids --- glycerophospholipids --- sphingolipids --- sterol lipids --- lipoproteins --- ?-synuclein-mediated pathology --- disease-modifying effects --- neuroprotection --- autophagy --- cysteinyl-dopamine --- hypochlorite --- oxidative stress --- Parkinson’s disease --- redox cycling --- Parkinson’s disease --- brain iron --- motor dysfunction --- neurometabolites --- magnetic resonance imaging --- magnetic resonance spectroscopy --- GABA --- spectroscopy --- Parkinson’s disease --- neuroinflammation --- alpha-Synuclein --- immunotherapy --- mesenchymal stem cells --- secretome --- exosomes --- Parkinson’s disease --- microRNAs --- Parkinson disease --- multiprofessional therapy --- inpatient treatment --- multimodal complex treatment --- caffeic acid --- chlorogenic acid --- rotenone --- Parkinson’s disease --- neuroprotection --- dopaminergic neuron --- myenteric plexus --- enteric glial cell --- metallothionein --- Parkinson’s disease --- microbiota --- molecular mimicry --- microbiome --- alpha-synuclein --- curli --- gut-brain axis --- neurodegeneration --- glucocerebrosidase --- Parkinson’s disease --- Gaucher’s disease --- Lewy Body Dementia --- REM sleep behavior disorders --- [123I]FP-CIT-SPECT --- DAT --- nigral cells --- Parkinson’s disease --- parkinsonisms --- cell line --- differentiation --- HOG --- immature oligodendrocyte --- Krabbe’s disease --- oligodendrocyte --- mature oligodendrocyte --- MO3.13 --- myelin --- multiple sclerosis --- schizophrenia --- SH-SY5Y

Biomaterials and Implant Biocompatibility

Authors: ---
ISBN: 9783039282166 9783039282173 Year: Pages: 420 DOI: 10.3390/books978-3-03928-217-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The scientific advances in life sciences and engineering are constantly challenging, expanding, and redefining concepts related to the biocompatibility and safety of medical devices. New biomaterials, new products, and new testing regimes are being introduced to

Keywords

carbonate apatite --- hydroxyapatite --- ?-tricalcium phosphate --- artificial bone substitute --- crystallite size --- dissolution rate --- hybrid dog --- bone levels --- dental implants --- neck design --- soft tissue dimensions --- peri-implantitis --- biofilm --- dental implants --- in vitro model --- MSN --- biopolymer --- drug delivery system --- in vitro kinetic studies --- articular cartilage defect --- bioplolymers --- C-reactive protein --- haptoglobin --- in vivo testing --- serum amyloid A --- serum protein fractions --- sheep --- contact lens --- materials --- biomedical implant --- smart dentin grinder --- autogenous particulate dentin graft --- tooth graft --- ground teeth --- human teeth --- bone grafts --- autologous graft --- dolomitic marble --- seashell --- CaCO3 derived-calcium phosphates --- modulated synthesis set-up --- SEM --- image analysis --- pre-osteoblasts --- titanium implants --- dental implants --- antibacterial coating --- gentamicin --- silver --- zinc --- cytotoxicity --- MC3T3-E1 --- Staphylococcus aureus --- plasma chemical oxidation --- bone infection --- local drug delivery --- bone graft --- demineralized bone matrix --- gentamicin --- regeneration --- colon cancer cells --- copper ions --- hydrogel sphere --- sodium alginate --- polyethyleneimine --- surface modification --- biocompatible metals --- coating techniques --- hydroxyapatite --- real-time live-cell imaging technology --- in vitro study --- biocompatibility --- 3D printing --- flow cytometry --- adipogenic mesenchymal stem cells --- porous SHS TiNi --- biocompatibility --- rheological similarity --- corrosion resistance --- bone substitution --- superparamagnetic scaffold --- composite --- laser direct writing --- static magnetic field --- extracellular matrix mineralization --- bone tissue engineering --- three-dimensional co-culture --- osteoblast --- endothelial cell --- microfiber scaffold --- osteogenesis --- angiogenesis --- tissue engineering --- diamond nanoparticles --- fish gelatin --- adipose-derived stem cells --- biocompatibility --- spaced TiO2 nanotubes --- osteoblast --- cell adhesion and morphology --- cell proliferation --- osteogenic differentiation --- protein–polymer matrices --- nanowelding --- single-walled carbon nanotubes --- point defects --- absorption --- laser radiation --- cell membrane --- mesenchymal stem cells --- osteogenic differentiation --- lactoferrin --- polymer composite --- bioceramics --- in vitro testing --- hydroxyapatite --- angiogenesis --- osteogenesis --- signaling pathways --- microRNA --- bioceramics --- bioactive glass --- hydroxyapatite --- root canal sealer --- bioactive glass --- mechanism --- caries --- review

Research of Pathogenesis and Novel Therapeutics in Arthritis

Author:
ISBN: 9783038970651 9783038970668 Year: Pages: 366 DOI: 10.3390/books978-3-03897-066-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Arthritis has a high prevalence globally and includes over 100 different types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. The exact etiology of arthritis remains unclear and no cure exists. Anti-inflammatory drugs are commonly used in the treatment of arthritis but are associated with significant side effects. Novel modes of therapy and additional prognostic biomarkers are urgently needed for arthritis patients. This book summarizes and discusses the global picture of the current understanding of arthritis.

Keywords

biosimilars --- Th9 lymphocytes --- rheumatoid arthritis --- infliximab --- rheumatoid arthritis --- bone erosion --- osteoblasts --- next-generation sequencing --- bioinformatics --- microRNA --- messenger RNA --- osteoarthritis --- cell signaling --- IL1? --- WNT --- antagonists --- computational modeling --- nitric oxide --- clodronate --- gene expression --- osteoarthritis --- progenitor cells --- SOX9 --- spondyloarthropathies --- inflammation --- mesenchymal stem cells --- visfatin --- IL-6 --- TNF-? --- osteoarthritis --- miR-199a-5p --- Epstein-Barr virus --- glycoprotein 42 --- rheumatoid arthritis --- shared epitope --- triptolide --- rheumatoid arthritis --- basic research --- clinical translation --- osteoarthritis (OA) --- articular cartilage --- molecular pathology --- therapeutics --- rheumatoid arthritis --- antibodies --- collagen --- glycosylation --- disease pathways --- therapy --- experimental arthritis --- TNF? --- etanercept --- infliximab --- adalimumab --- certolizumab pegol --- golimumab --- rheumatoid arthritis --- therapeutic antibody --- structure --- fraxinellone --- collagen-induced arthritis --- rheumatoid arthritis --- inflammatory arthritis --- osteoclastogenesis --- sclareol --- rheumatoid arthritis --- synovial cell --- collagen --- mice --- cytokines --- Th17 --- MAPK --- arthritis --- osteoarthritis --- rheumatoid arthritis --- small-molecule inhibitor --- chondrocytes --- tumor necrosis factor-alpha --- inflammation --- rheumatoid arthritis --- osteoarthritis --- angiogenesis --- cytokines --- chemokines --- early osteoarthritis --- articular cartilage --- proliferation --- fibroblast growth factor 2 --- mitogen activated protein kinase --- transforming growth factor ? --- SMA- and MAD-related protein --- interleukin --- nuclear factor kappa B --- miRNA --- adjuvant arthritis --- arthritis --- biomarkers --- celastrol --- inflammation --- microRNA --- miRNA --- rat --- rheumatoid arthritis --- Traditional Chinese medicine --- tripterine --- triterpenoid --- spinal fusion --- biological --- osteoblast --- osteoclast --- bisphosphonate --- parathyroid hormone --- bone morphogenetic protein --- receptor activator of nuclear factor ?B --- stem cell --- drug delivery system --- anticitrullinated peptide antibodies --- antirheumatic drug --- autoimmune --- disease-modifying --- immunology --- pathology --- rheumatoid factor --- rheumatoid arthritis --- osteoarthritis --- adipokines --- obesity --- rheumatoid arthritis --- osteoarthritis --- anti-arthritis --- biomarkers

Molecular Research of Endometrial Pathophysiology

Authors: ---
ISBN: 9783039214952 9783039214969 Year: Pages: 378 DOI: 10.3390/books978-3-03921-496-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The endometrium has been the subject of intense research in a variety of clinical settings, because of its importance in the reproductive process and its role in women’s health. In the past 15 years, significant efforts have been invested in defining the molecular phenotype of the receptive phase endometrium as well as of various endometrial pathologies. Although this has generated a wealth of information on the molecular landscape of human endometrium, there is a need to complement this information in light of the novel methodologies and innovative technical approaches. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms of endometrium and endometrium-related disorders. The progress made in the molecular actions of steroids, in the metabolism of steroids and intracrinology, in endometrial intracellular pathways, in stem cells biology, as well as in the molecular alterations underlying endometrium-related pathologies has been the focus of the reviews and papers included.

Keywords

RANK --- endometrium --- endometrial cancer --- prognosis --- immunohistochemistry --- gene expression --- endometriosis --- developmental pathway --- pathogenomics --- mesenchymal stem cells --- endometrial cancer --- mtDNA mutations --- deficit of complex I --- antioxidant response --- mitochondrial biogenesis --- mitochondrial dynamics --- mitophagy --- miRNA --- lncRNAs --- endometrial cancer --- endometriosis --- chronic endometritis --- cell contacts --- tight junction --- adherens junction --- gap junction --- endometrium --- implantation --- decidualization --- endometriosis --- endometrial cancer --- liquid biopsy --- uterine aspirate --- circulating tumour cells (CTCs) --- circulating tumour DNA (ctDNA) --- exosomes --- Vitamin D --- endometrium --- endometrial cancer --- endometrial cancer --- preclinical models --- translational research --- endometrial cancer --- type II endometrial carcinoma --- targeted therapy --- kinase inhibitor --- molecular marker --- protein kinase --- protein phosphatase --- PP2A --- PPP2R1A --- SMAP --- endometriosis --- infertility --- niche --- inflammation --- immunomodulation --- mesenchymal stem cell --- orthoxenograft --- uterine cancer --- avatar --- murine models --- personalized medicine --- targeted therapy --- preclinical studies --- translational research --- endometriosis --- TRP channels --- endometrial stromal cells --- eutopic and ectopic endometrium --- endometrial cell --- pathway --- proliferation --- decidualization --- migration --- angiogenesis --- regeneration --- breakdown --- implantation --- endometrial cancer --- orthotopic xenograft model --- estrogen dependent --- bioluminescence imaging --- contrast-enhanced CT scan --- endometrium --- adult stem cells --- endometrial regeneration --- stem cell markers --- endometriosis --- endometrial cancer --- decidualisation --- oestradiol --- aromatase --- testosterone --- dehydroepiandrosterone (DHEA) --- endometriosis --- endometrial cancer --- sulfatase --- endometriosis --- ectopic stroma --- microRNA --- small RNA sequencing --- EDN1 --- HOXA10 --- miR-139-5p --- miR-375 --- CTCF --- tumour suppressor gene --- haploinsufficiency --- zinc finger --- CRISPR/Cas9 --- cancer --- endometrial cancer --- gene editing --- phosphoinositide 3-kinase --- PIK3CA --- PIK3CB --- p110? --- p110? --- endometrial cancer --- LGR5 --- endometrium --- endometriosis --- menstrual cycle --- macrophages

Kidney Inflammation, Injury and Regeneration

Authors: --- ---
ISBN: 9783039285389 / 9783039285396 Year: Pages: 496 DOI: 10.3390/books978-3-03928-539-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Acute kidney injury (AKI) is still associated with high morbidity and mortality incidence rates, and also bears an elevated risk of subsequent chronic kidney disease. Although the kidney has a remarkable capacity for regeneration after injury and may recover completely depending on the type of renal lesions, the options for clinical intervention are restricted to fluid management and extracorporeal kidney support. The development of novel therapies to prevent AKI, to improve renal regeneration capacity after AKI, and to preserve renal function is urgently needed. The Special Issue covers research articles that investigated the molecular mechanisms of inflammation and injury during different renal pathologies, renal regeneration, diagnostics using new biomarkers, and the effects of different stimuli like medication or bacterial components on isolated renal cells or in vivo models. The Special Issue contains important reviews that consider the current knowledge of cell death and regeneration, inflammation, and the molecular mechanisms of kidney diseases. In addition, the potential of cell-based therapy approaches that use mesenchymal stromal/stem cells or their derivates is summarized. This edition is complemented by reviews that deal with the current data situation on other specific topics like diabetes and diabetic nephropathy or new therapeutic targets.

Keywords

kidney injury --- alport syndrome --- modifier gene --- nephrin --- podocin --- glomerular basement membrane --- slit diaphragm --- focal segmental glomerulosclerosis --- inflammatory bowel disease (IBD) --- DSS-colitis --- glomerular filtration barrier (GFB) --- type IV collagen --- type I collagen --- type V collagen --- genotype --- IL-18 --- polymorphism --- renal cell carcinoma --- Taiwan --- mesenchymal stem cells --- acute and chronic kidney disease --- exosome --- natural products --- non-coding RNAs --- microRNAs --- long non-coding RNAs --- renal fibrosis --- biomarkers --- therapeutics targets --- rhabdomyolysis --- pigment nephropathy --- haem --- NLRP3 inflammasome --- acute kidney injury --- hypertension --- kidney --- molecular signaling --- hematuria --- inflammation --- oxidative stress --- tubular injury --- AKI --- chronic kidney disease (CKD) --- mesenchymal stromal cells --- extracellular vesicles --- acute kidney injury --- modified-MSCs --- microRNA --- mesenchymal stem cell --- mesodermal stem cell --- renal ischemia-reperfusion --- inflammation --- kidney transplantation --- microRNA --- extracellular vesicles --- exosomes --- B-cell attracting chemokine --- CXCL13 --- kidney transplantation --- allograft rejection --- T cell-mediated rejection --- diabetic nephropathy --- lysophosphatidic acid --- lysophosphatidic acid receptor --- chronic kidney injury --- kidney proximal tubule --- acute kidney failure --- signal transduction --- transcription --- CREB Regulated Transcriptional Coactivators (CRTC) --- cAMP Regulatory Element Binding Protein (CREB) --- Salt Inducible Kinase (SIK) --- Class IIa Histone Deacetylases (HDAC) --- lncRNA --- long non-coding RNA --- miRNA --- kidney --- glomerulus --- podocyte --- acute kidney injury --- AKI --- diabetic nephropathy --- diabetic kidney disease --- diabetic nephropathy --- inflammation --- signaling cascade --- ischemia-reperfusion --- acute kidney injury --- stem cell --- conditioned medium --- inflammation --- apoptosis --- necrosis --- regulated necrosis --- kidney injury --- tubular injury --- glomerular injury --- polyunsaturated fatty acids --- omega-3 fatty acid --- inflammatory maker --- C-reactive protein --- interleukin-6 --- LPS-binding protein --- fibrosis --- pericyte --- myofibroblast --- endotoxemia-induced oliguric kidney injury --- arachidonic acid --- cyclooxygenase --- lipoxygenase --- cytochrome P450 --- kidney inflammation --- therapeutic target --- obese kidney fibrosis --- endotoxemia --- ROS --- cPLA2 and COX-2 --- IgA nephropathy --- KIT assay --- KIT-IgA score --- noninvasive --- diagnostics --- prediction --- diabetic kidney diseases --- xanthine oxidase --- glomerular damage --- acute kidney injury --- chronic kidney disease --- renal progenitors --- polyploidization --- diabetic nephropathy --- diabetes mellitus --- GLP-1 receptor agonists --- SGLT2 inhibitors --- molecular mechanisms --- chemerin --- CmklR1 --- 2-kidney-1-clip --- 2k1c --- Thy1.1 nephritis --- renovascular hypertension --- renal inflammation --- renal injury --- renal fibrosis --- inflammation --- ischemia/reperfusion injury --- Farnesiferol B --- Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-?B) --- G-protein-coupled bile acid receptor (TGR5) --- renal stem cells --- differentiation --- scattered tubular cells --- papilla --- niches --- renal tubular cells --- epithelial cells --- proximal tubule --- cytotoxicity --- injury --- inflammation --- empagliflozin --- dapagliflozin --- kidney --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search