Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Quantitative Systems Biology for Engineering Organisms and Pathways

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198290 Year: Pages: 126 DOI: 10.3389/978-2-88919-829-0 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Studying organisms as a whole for potential metabolic(ally) engineering of organisms for production of (bio)chemicals is essential for industrial biotechnology. To this end, integrative analysis of different –omics measurements (transciptomics, proteomics, metabolomics, fluxomics) provides invaluable information. Combination of experimental top-down and bottom-up approaches with powerful analytical tools/techniques and mathematical modeling, namely (quantitative) systems biology, currently making the state of art of this discipline, is the only practice that would improve our understanding for the purpose. The use of high-throughput technologies induced the required development of many bioinformatics tools and mathematical methods for the integration of obtained data. Such research is significant since compiling information from different levels of a living system and connecting them is not an easy task. In particular, construction of dynamic models for product improvement has been one of the goals of many research groups. In this Research Topic, we summarize and bring a general review of the most recent and relevant contributions in quantitative systems biology applied in metabolic modeling perspective. We want to make special emphasis on the techniques that can be widely implemented in regular scientific laboratories and in those works that include theoretical presentations. With this Research Topic we discuss the importance of applying systems biology approaches for finding metabolic engineering targets for the efficient production of the desired biochemical integrating information from genomes and networks to industrial production. Examples and perspectives in the design of new industrially relevant chemicals, e.g. increased titer/productivity/yield of (bio)chemicals, are welcome. Addition to the founded examples, potential new techniques that would frontier the research will be part of this topic. The significance of multi ‘omics’ approaches to understand/uncover the pathogenesis/mechanisms of metabolic diseases is also one of the main topics.

Genetic and Genome-Wide Insights into Microbes Studied for Bioenergy

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450855 Year: Pages: 186 DOI: 10.3389/978-2-88945-085-5 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The global mandate for safer, cleaner and renewable energy has accelerated research on microbes that convert carbon sources to end-products serving as biofuels of the so-called first, second or third generation – e.g., bioethanol or biodiesel derived from starchy, sugar-rich or oily crops; bioethanol derived from composite lignocellulosic biomass; and biodiesels extracted from oil-producing algae and cyanobacteria, respectively. Recent advances in ‘omics’ applications are beginning to cast light on the biological mechanisms underlying biofuel production. They also unravel mechanisms important for organic solvent or high-added-value chemical production, which, along with those for fuel chemicals, are significant to the broader field of Bioenergy. The Frontiers in Microbial Physiology Research Topic that led to the current e-book publication, operated from 2013 to 2014 and welcomed articles aiming to better understand the genetic basis behind Bioenergy production. It invited genetic studies of microbes already used or carrying the potential to be used for bioethanol, biobutanol, biodiesel, and fuel gas production, as also of microbes posing as promising new catalysts for alternative bioproducts. Any research focusing on the systems biology of such microbes, gene function and regulation, genetic and/or genomic tool development, metabolic engineering, and synthetic biology leading to strain optimization, was considered highly relevant to the topic. Likewise, bioinformatic analyses and modeling pertaining to gene network prediction and function were also desirable and therefore invited in the thematic forum. Upon e-book development today, we, at the editorial, strongly believe that all articles presented herein – original research papers, reviews, perspectives and a technology report – significantly contribute to the emerging insights regarding microbial-derived energy production. Katherine M. Pappas, 2016

Biotechnology of Microalgae, Based on Molecular Biology and Biochemistry of Eukaryotic Algae and Cyanobacteria

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451296 Year: Pages: 184 DOI: 10.3389/978-2-88945-129-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Bioechnology of microalgae takes much attention because of their ability to utilize light energy and fix CO2. Research in biotechnology of microalgae including eukaryotic algae and cyanobacteria is an important and attractive topic which attracts the interests of the public widely. This Research Topic aims to create a collection approaching biotechnology and biology of eukaryotic algae and cyanobacteria. Basic science of molecular biology and biochemistry is indispensable for proceeding future application of microalgae, and hence, the title includes "molecular biology" and "biochemistry". Broad range of basic and applied science of microalgae is appreciated in this special topic.

Carboxylic Acid Production

Author:
ISBN: 9783038425526 9783038425533 Year: Pages: 174 DOI: 10.3390/books978-3-03842-553-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-04 15:30:04
License:

Loading...
Export citation

Choose an application

Abstract

Carboxylic acids are truly central compounds in cellular metabolism. Carbon dioxide is captured from the atmosphere through formation of carboxylic groups and is also released, in part, by decarboxylation reactions. The reactivity of the carboxylic group with amino- or hydroxyl-groups enables the formation of peptide and ester bonds. The functionality of the carboxylic group is also of huge importance in our industrial world for a wide range of applications. The loosely bound hydrogen provides weak acid functionality, much desired for food industry applications in preservatives and flavour compounds. Citric acid is one of our oldest industrial fermentation products. The presence of two carboxylic groups, or a combination of one carboxylic group and another functional group, make the compounds interesting building blocks for polymer production. A number of carboxylic acids, including, e.g., lactic, succinic, 3-hydroxypropionic and itaconic acids, have been identified and recognized as suitable platform chemicals for a foreseen growing carbohydrate based economy. Economic margins are, however, tight when competing with petroleum based production, and production strains, fermentation technology and—not least—downstream processing, all need to be improved to enable viable commercial production.This Special issue will cover current developments within this exciting field. Topics will include: Fermentation physiology of natural carboxylic acid producers; screening and isolation of novel producers; metabolic engineering for improving intrinsic carboxylic acid production; metabolic engineering for expanding product range to non-endogenous carboxylic acids; production from lignocellulosic derived sugars or by-product streams; downstream processing for recovery of carboxylic acids; bioprocess design—including continuous processes and integration.All production organisms—fungi, yeasts, bacteria—are welcome.

Current Challenges in Modeling Cellular Metabolism

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197545 Year: Pages: 115 DOI: 10.3389/978-2-88919-754-5 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Science (General) --- Biotechnology --- General and Civil Engineering
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.

Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450510 Year: Pages: 377 DOI: 10.3389/978-2-88945-051-0 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering --- Botany --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.

Advances in Plastid Biology and Its Applications

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450480 Year: Pages: 159 DOI: 10.3389/978-2-88945-048-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.

Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199211 Year: Pages: 130 DOI: 10.3389/978-2-88919-921-1 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The discipline of Synthetic Biology has recently emerged at the interface of biology and engineering. The definition of Synthetic Biology has been dynamic over time ever since, which exemplifies that the field is rapidly moving and comprises a broad range of research areas. In the frame of this Research Topic, we focus on Synthetic Biology approaches that aim at rearranging biological parts/ entities in order to generate novel biochemical functions with inherent metabolic activity. This Research Topic encompasses Pathway Engineering in living systems as well as the in vitro assembly of biomolecules into nano- and microscale bioreactors. Both, the engineering of metabolic pathways in vivo, as well as the conceptualization of bioreactors in vitro, require rational design of assembled synthetic pathways and depend on careful selection of individual biological functions and their optimization. Mathematical modelling has proven to be a powerful tool in predicting metabolic flux in living and artificial systems, although modelling approaches have to cope with a limitation in experimentally verified, reliable input variables. This Research Topic puts special emphasis on the vital role of modelling approaches for Synthetic Biology, i.e. the predictive power of mathematical simulations for (i) the manipulation of existing pathways and (ii) the establishment of novel pathways in vivo as well as (iii) the translation of model predictions into the design of synthetic assemblies.

Yeast Biotechnology

Author:
ISBN: 9783038424437 9783038424420 Year: Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-28 09:30:16
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.

Bioconversion Processes

Author:
ISBN: 9783038429456 9783038429463 Year: Pages: VI, 150 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Biology
Added to DOAB on : 2018-06-22 12:05:03
License:

Loading...
Export citation

Choose an application

Abstract

Compared to conventional chemical technologies and other similar industrial processes, bioprocesses represent a more sustainable and environmentally-friendly alternative for the production of fuels and platform chemicals. In biorefineries, different kinds of feedstocks, such as biomass or lignocellulosic materials in general, can be used and fermented by microorganisms (e.g., bacteria, fungi, algae), after some pretreatment steps, to produce high added-value metabolites. More recently, wastes, wastewaters and also waste gases have been shown to be suitable for resource recovery or for their bioconversion to (bio)fuels (e.g., ethanol, butanol, hexanol, biodiesel, biohydrogen, biogas) or other commercial products (e.g., biopolymers). In this sense, much effort has also been made to bioconvert greenhouse gases, such as CO2, into useful products.The goal of this Special Issue is to publish both recent innovative research data, as well as review papers on the fermentation of different types of substrates to commercial (bio)fuels and (bio)products, mainly focusing on the bioconversion of pollutants in solid, liquid, or gas phases (wastes, wastewaters, waste gases).

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search