Search results: Found 4

Listing 1 - 4 of 4
Sort by
Exploring Cancer Metabolic Reprogramming Through Molecular Imaging

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452347 Year: Pages: 242 DOI: 10.3389/978-2-88945-234-7 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Cancer Metabolism: Molecular Targeting and Implications for Therapy

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453221 Year: Pages: 114 DOI: 10.3389/978-2-88945-322-1 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Development of an effective anticancer therapeutic necessitates the selection of cancer-related or cancer-specific pathways or molecules that are sensitive to intervention. Several such critical yet sensitive molecular targets have been recognized, and their specific antagonists or inhibitors validated as potential therapeutics in preclinical models. Yet, majority of anticancer principles or therapeutics show limited success in the clinical translation. Thus, the need for the development of an effective therapeutic strategy persists. “Altered energy metabolism” in cancer is one of the earliest known biochemical phenotypes which dates back to the early 20th century. The German scientist, Otto Warburg and his team (Warburg, Wind, Negelein 1926; Warburg, Wind, Negelein 1927) provided the first evidence that the glucose metabolism of cancer cells diverge from normal cells. This phenomenal discovery on deregulated glucose metabolism or cellular bioenergetics is frequently witnessed in majority of solid malignancies. Currently, the altered glucose metabolism is used in the clinical diagnosis of cancer through positron emission tomography (PET) imaging. Thus, the “deregulated bioenergetics” is a clinically relevant metabolic signature of cancer cells, hence recognized as one of the hallmarks of cancer (Hanahan and Weinberg 2011). Accumulating data unequivocally demonstrate that, besides cellular bioenergetics, cancer metabolism facilitates several cancer-related processes including metastasis, therapeutic resistance and so on. Recent reports also demonstrate the oncogenic regulation of glucose metabolism (e.g. glycolysis) indicating a functional link between neoplastic growth and cancer metabolism. Thus, cancer metabolism, which is already exploited in cancer diagnosis, remains an attractive target for therapeutic intervention as well. The Frontiers in Oncology Research Topic “Cancer Metabolism: Molecular Targeting and Implications for Therapy” emphases on recent advances in our understanding of metabolic reprogramming in cancer, and the recognition of key molecules for therapeutic targeting. Besides, the topic also deliberates the implications of metabolic targeting beyond the energy metabolism of cancer. The research topic integrates a series of reviews, mini-reviews and original research articles to share current perspectives on cancer metabolism, and to stimulate an open forum to discuss potential challenges and future directions of research necessary to develop effective anticancer strategies.

Cell Stress, Metabolic Reprogramming, and Cancer

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455652 Year: Pages: 68 DOI: 10.3389/978-2-88945-565-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The present eBook presents one review, five mini-reviews, and an opinion article on the achievements and perspectives of studies on important aspects of cancer cell metabolic reprogramming whose mechanisms and regulation are still largely elusive. It also sheds light on certain novel functional components, which rewires cell metabolism in tumor transformation.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 / 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search