Search results: Found 2

Listing 1 - 2 of 2
Sort by
Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 / 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Gas Flows in Microsystems

Authors: ---
ISBN: 9783039215423 / 9783039215430 Year: Pages: 220 DOI: 10.3390/books978-3-03921-543-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.

Keywords

pressure drop --- microchannels --- heat sinks --- slip flow --- electronic cooling --- Knudsen pump --- thermally induced flow --- gas mixtures --- direct simulation Monte Carlo (DSMC) --- microfluidic --- rarefied gas flows --- micro-scale flows --- Knudsen layer --- computational fluid dynamics (CFD) --- OpenFOAM --- Micro-Electro-Mechanical Systems (MEMS) --- Nano-Electro-Mechanical Systems (NEMS) --- backward facing step --- gaseous rarefaction effects --- fractal surface topography --- modified Reynolds equation --- aerodynamic effect --- bearing characteristics --- underexpansion --- Fanno flow --- flow choking --- compressibility --- binary gas mixing --- micro-mixer --- DSMC --- splitter --- mixing length --- control mixture composition --- preconcentrator --- microfluidics --- miniaturized gas chromatograph --- BTEX --- PID detector --- ultraviolet light-emitting diode (UV LED) --- spectrophotometry --- UV absorption --- gas sensors --- Benzene, toluene, ethylbenzene and xylene (BTEX) --- toluene --- hollow core waveguides --- capillary tubes --- gas mixing --- pulsed flow --- modular micromixer --- multi-stage micromixer --- modelling --- photoionization detector --- microfluidics --- microfabrication --- volatile organic compound (VOC) detection --- toluene --- supersonic microjets --- Pitot tube --- Knudsen pump --- thermal transpiration --- vacuum micropump --- rarefied gas flow --- kinetic theory --- microfabrication --- photolithography --- microfluidics --- resonant micro-electromechanical-systems (MEMS) --- micro-mirrors --- out-of-plane comb actuation --- fluid damping --- analytical solution --- FE analysis --- miniaturization --- gas flows in micro scale --- measurement and control --- integrated micro sensors --- advanced measurement technologies --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2019 (2)