Search results: Found 2

Listing 1 - 2 of 2
Sort by
Biofilms: Extracellular Bastions of Bacteria

Author:
ISBN: 9783906980942 9783906980959 Year: Pages: 300 DOI: 10.3390/books978-3-906980-95-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 06:42:46
License:

Loading...
Export citation

Choose an application

Abstract

Biofilms are attached forms of bacteria and other microorganisms enclosed in a matrix of extracellular polymeric substances (EPS), and comprise a microbial lifestyle that is quite different from that of free-living planktonic cells. The biofilm state is now universally-recognized for its complexity and resiliency to stresses, and importance in natural environments, as well its roles in comensal flora and infection processes. However, the EPS matrix, which occur just ‘outside of cells’, is poorly understood, and has been understated in the literature. Yet this extracellular milieu is crucial to the functioning and resiliency of the biofilm. Recently, exciting new advances have emerged that are helping to understand the EPS matrix, its processes, ultrastructure, and importance to cells in nature and disease.

Systems biology and ecology of microbial mat communities

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197934 Year: Pages: 262 DOI: 10.3389/978-2-88919-793-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-02-03 17:04:57
License:

Loading...
Export citation

Choose an application

Abstract

Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.

Listing 1 - 2 of 2
Sort by
Narrow your search