Search results: Found 2

Listing 1 - 2 of 2
Sort by
Biogenesis of the oxidative phosphorylation machinery in plants. From gene expression to complex assembly

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192786 Year: Pages: 98 DOI: 10.3389/978-2-88919-278-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology --- Botany
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Mitochondrial biogenesis is an extremely complex process. A hint of this complexity is clearly indicated by the many steps and factors required to assemble the respiratory complexes involved in oxidative phosphorylation. These steps include the expression of genes present in both the nucleus and the organelle, intricate post-transcriptional RNA processing events, the coordinated synthesis, transport and assembly of the different subunits, the synthesis and assembly of co-factors and, finally, the formation of supercomplexes or respirasomes. It can be envisaged, and current knowledge supports this view, that plants have evolved specific mechanisms for the biogenesis of respiratory complexes. For example, expression of the mitochondrial genome in plants has special features, not present in other groups of eukaryotes. Moreover, plant mitochondrial biogenesis and function should be considered in the context of the presence of the chloroplast, a second organelle involved in energetic and redox metabolism. It implies the necessity to discriminate between proteins destined for each organelle and requires the establishment of functional interconnections between photosynthesis and respiration. In recent years, our knowledge of the mechanisms involved in these different processes in plants has considerably increased. As a result, the many events and factors necessary for the correct expression of proteins encoded in the mitochondrial genome, the cis acting elements and factors responsible for the expression of nuclear genes encoding respiratory chain components, the signals and mechanisms involved in the import of proteins synthesized in the cytosol and the many factors required for the synthesis and assembly of the different redox co-factors (heme groups, iron-sulfur clusters, copper centers) are beginning to be recognized at the molecular level. However, detailed knowledge of these processes is still not complete and, especially, little is known about how these processes are interconnected. Questions such as how the proteins, once synthesized in the mitochondrial matrix, are inserted into the membrane and assembled with other components, including those imported from the cytosol, how the expression of both genomes is coordinated and responds to changes in mitochondrial function, cellular requirements or environmental cues, or which factors and conditions influence the assembly of complexes and supercomplexes are still open and will receive much attention in the near future. This Research Topic is aimed at establishing a collection of articles that focus on the different processes involved in the biogenesis of respiratory complexes in plants as a means to highlight recent advances. In this way, it intends to help to construct a picture of the whole process and, not less important, to expose the existing gaps that need to be addressed to fully understand how plant cells build and modulate the complex structures involved in respiration.

Mycoviruses

Author:
ISBN: 9783038979968 / 9783038979975 Year: Pages: 350 DOI: 10.3390/books978-3-03897-997-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

A virus (from the Latin word ‘v?rus’ meaning ‘venom’ or ‘poison’) is a microorganism invisible to the naked eye. Viruses can multiply exclusively by entering a cell and using the cell’s resources to create copies of themselves. As the origin of their name suggests, viruses are generally considered dangerous, harmful and often deadly. Some of the most well-studied and widely known viruses, such as HIV and influenza, infect humans. However, viruses can also infect animals, plants and microorganisms, including fungi. Many fungi are medically, ecologically and economically significant, for example, causing diseases to humans, plants and insects or being used in industry to produce bread, cheese, beer and wine. Viruses that infect fungi are called mycoviruses (from the Greek work ‘myco’, meaning ‘fungus’). Mycoviruses do not cause harm to or kill the infected fungus; in contrast, they are ‘friendly’ viruses and we can utilize them to control the growth, pathogenicity and toxin production of fungi. This book describes a range of different mycoviruses and their geographical distribution, transmission and evolution, together with their effects on the fungal hosts and how these are brought about.

Keywords

RNA silencing --- gemycircularvirus --- mycovirus --- antiviral --- dicer --- dsRNA mycoviruses --- multiplex PCR --- Aspergillus fumigatus chrysovirus --- Aspergillus fumigatus partitivirus-1 --- Aspergillus fumigatus tetramycovirus-1. --- Botrytis cinerea --- hypovirus --- fusarivirus --- hypovirulence --- infection cushion --- Botrytis cinerea --- Botrytis cinerea mymonavirus 1 --- Mymonaviridae --- dsRNA virus --- mycovirus --- capsid protein --- capsid structure --- virus evolution --- viral lineage --- ScV-L-A --- PcV --- PsV-F --- RnQV1 --- chrysovirus --- mycovirus --- Aspergillus --- A. fumigatus --- A. nidulans --- A. niger --- A. thermomutatus --- biocontrol --- Saccharomyces paradoxus --- Totiviridae --- dsRNA virus --- killer system --- Trichoderma atroviride --- Mycovirus --- Partitivirus --- Fusarium head blight --- mycovirus --- RNA genome --- mitovirus --- Tymovirales --- Ethiopia --- Sclerotinia minor --- endornavirus --- hypovirulence --- transmissibility --- biological control --- Chalara fraxinea --- Hymenoscyphus pseudoalbidus --- ash dieback --- Narnaviridae --- evolution --- invasive species --- horizontal virus transmission --- Brunchorstia pinea --- conifers --- mycovirus --- dsRNA --- ssRNA --- phylogeny --- evolution --- mycovirus --- Beauveria bassiana --- partitivirus --- victorivirus --- polymycovirus --- selection pressure --- recombination --- transmission --- mycovirus --- populations study --- Cryphonectria parasitica --- chestnut blight --- Castanea sativa --- biological control --- Mycovirus --- rice blast fungus --- Magnaporthe oryzae. chrysovirus 1 --- double-stranded RNA virus --- hypovirulence --- Rhizoctonia solani AG-1 IA --- mycovirus --- dsRNA --- Alphapartitivirus --- genomic structure analysis --- mycorrhizal fungi --- mycovirus --- mitovirus --- Rhizophagus --- hypovirus --- small RNA --- tRFs --- mycovirus --- fungal viruses --- dsRNA mycoviruses --- hypervirulence --- Leptosphaeria biglobosa quadrivirus --- Botrytis cinerea --- hypovirulence --- partitivirus --- conidiogenesis --- sclerogenesis --- mycovirus --- dsRNA --- sequencing --- killer toxin --- totivirus --- brown rot --- stone fruit --- Prunus --- mycovirus --- hypervirulence --- hypovirulence --- isogenic --- database mining --- Entomophthora --- Entomophthoromycotina --- fungal virus --- mitochondrion --- mycovirus --- virus discovery --- Mitovirus --- Narnaviridae --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search