Search results: Found 5

Listing 1 - 5 of 5
Sort by
Mitochondria in Skeletal Muscle Health, Aging and Diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450732 Year: Pages: 142 DOI: 10.3389/978-2-88945-073-2 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Skeletal muscle is the most abudant tissue of the human body, making up to 40 to 50% of the human body mass. While the importance of optimal muscle function is well recognized in the athletic field, its significance for general health is often underappreciated. In fact, the evidence that muscle mass, strength and metabolism are essential for our overall health is overwhelming. As the largest protein reservoir in the human body, muscles are essential in the acute response to critical illness such as sepsis, advanced cancer, and traumatic injury. Loss of skeletal muscle mass has also been associated with weakness, fatigue, insulin resistance, falls, fractures, frailty, disability, several chronic diseases and death. As a consequence, maintaining skeletal muscle mass, strength and metabolism throughout the lifespan is critical to the maintenance of whole body health. Mitochondria are fascinating organelles regulating many critical cellular processes for skeletal muscle physiology, including for instance energy supply, reactive oxygen species production, calcium homeostasis and the regulation of apoptosis. It is therefore not surprising that mitochondrial dysfunction has been implicated in a large number of adverse events/conditions and pathologies affecting skeletal muscle health. While the importance of normal mitochondrial function is well recognized for muscle physiology, there are important aspects of mitochondrial biology that are still poorly understood. These include mitochondrial dynamics (fusion and fission processes), morphology and processes involved in mitochondrial quality control (mitophagy). Defining the mechanisms regulating these different aspects of mitochondrial biology, their importance for muscle physiology, as well as the interrelations will be critical for expanding understanding of the role played by mitochondria in skeletal muscle physiology and health. The present research topic provides readers with novel experimental approaches, knowledge, hypotheses and findings related to all aspects of mitochondrial biology in healthy and diseased muscle cells.Skeletal muscle is the most abudant tissue of the human body, making up to 40 to 50% of the human body mass. While the importance of optimal muscle function is well recognized in the athletic field, its significance for general health is often underappreciated. In fact, the evidence that muscle mass, strength and metabolism are essential for our overall health is overwhelming. As the largest protein reservoir in the human body, muscles are essential in the acute response to critical illness such as sepsis, advanced cancer, and traumatic injury. Loss of skeletal muscle mass has also been associated with weakness, fatigue, insulin resistance, falls, fractures, frailty, disability, several chronic diseases and death. As a consequence, maintaining skeletal muscle mass, strength and metabolism throughout the lifespan is critical to the maintenance of whole body health. Mitochondria are fascinating organelles regulating many critical cellular processes for skeletal muscle physiology, including for instance energy supply, reactive oxygen species production, calcium homeostasis and the regulation of apoptosis. It is therefore not surprising that mitochondrial dysfunction has been implicated in a large number of adverse events/conditions and pathologies affecting skeletal muscle health. While the importance of normal mitochondrial function is well recognized for muscle physiology, there are important aspects of mitochondrial biology that are still poorly understood. These include mitochondrial dynamics (fusion and fission processes), morphology and processes involved in mitochondrial quality control (mitophagy). Defining the mechanisms regulating these different aspects of mitochondrial biology, their importance for muscle physiology, as well as the interrelations will be critical for expanding understanding of the role played by mitochondria in skeletal muscle physiology and health. The present research topic provides readers with novel experimental approaches, knowledge, hypotheses and findings related to all aspects of mitochondrial biology in healthy and diseased muscle cells.

Mitochondrial Dysfunction in Aging and Diseases of Aging

Author:
ISBN: 9783039213276 9783039213283 Year: Pages: 270 DOI: 10.3390/books978-3-03921-328-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This collection of review articles authored by international experts pulls together current information about the role of mitochondria in aging and diseases of aging. Mitochondria are vitally important cellular organelles and undergo their own aging process becoming less efficient in aged animals including humans. These changes have wide-ranging significance contributing to immune dysfunction (autoimmunity and immune deficiency), inflammation, delayed healing, skin and retinal damage, cancer and most of the degenerative diseases of aging. Mitochondrial aging predisposes to drug toxicity in the geriatric population and to many of the features of normal aging. The research detailed in this book summarizes current understanding of the role of mitochondria in the complex molecular changes of aging, moving on to specific diseases of aging. Mitochondrial dysfunction is an important target for development of treatments for aging and disease. The last article details how exercise is a treatment and combats many features of the aging process.

Keywords

aging --- mitochondria --- inflammation --- innate immunity --- adaptive immunity --- immunosenescence --- cell danger response --- healing cycle --- mitochondria --- purinergic signaling --- metabokines --- sphingolipids --- integrated cell stress response --- de-emergence --- crabtree effect --- pasteur effect --- coenzyme Q10 --- aging --- age-related diseases --- mitochondrial dysfunction --- mitochondria --- skin --- ageing --- reactive oxygen species --- photoageing --- 25(OH)D --- 1,25(OH)2D --- aging --- cytokines --- inflammation --- morbidity and mortality --- prevention --- reactive oxygen species --- ultraviolet --- aging --- mitochondria --- retina --- optic nerve --- diabetic retinopathy --- age-related macular degeneration --- glaucoma --- drug-induced mitochondrial toxicity --- polypharmacy --- aging --- mitochondrial dysfunction --- insulin resistance --- type 2 diabetes --- mitochondrial transfer --- exosomes --- mitochondrial --- genetic mutations --- cardiovascular disease --- heart failure --- cardiomyopathy --- mitochondria --- cancer --- nucleotide metabolism --- DNA damage --- NAD+ --- mitochondria --- ALS --- axonal transport --- mitophagy --- SOD1 --- Miro1 --- PINK1 --- Parkin --- multiple sclerosis --- mitochondria --- neuroinflammation --- neurodegeneration --- Parkinson’s disease --- mitochondria --- ageing --- neurodegenerative disease --- Alzheimer’s disease --- eIF2? --- metabolism --- mitochondria --- proteostasis --- stress response --- aging --- exercise --- mitochondria --- aerobic --- ROS --- inflammation --- senescence --- lysosome --- autophagy --- mitophagy --- n/a

Curcumin in Health and Disease

Author:
ISBN: 9783039214495 9783039214501 Year: Pages: 274 DOI: 10.3390/books978-3-03921-450-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The plant-derived polyphenol curcumin has been used in promoting health and combating disease for thousands of years. Its therapeutic effects have been successfully utilized in Ayurvedic and Traditional Chinese Medicine in order to treat inflammatory diseases. Current results from modern biomolecular research reveal the modulatory effects of curcumin on a variety of signal transduction pathways associated with inflammation and cancer. In this context, curcumin’s antioxidant, anti-inflammatory, anti-tumorigenic, and even anti-metastatic activities are discussed. On the cellular level, the reduced activity of several transcription factors (such as NFkB or AP-1) and the suppression of inflammatory cytokines, matrix degrading enzymes, metastasis related genes and even microRNAs are reported. On functional levels, these molecular effects translate into reduced proliferative, invasive, and metastatic capacity, as well as induced tumor cell apoptosis. All these effects have been observed not only in vitro but also in animal models. In combination with anti-neoplastic drugs like Taxol, kinase inhibitors, and radiation therapy, curcumin potentiates the drugs’ therapeutic power and can protect against undesired side effects. Natural plant-derived compounds like curcumin have one significant advantage: They do not usually cause side effects. This feature qualifies curcumin for primary prevention in healthy persons with a predisposition to cancer, arteriosclerosis, or chronic inflammatory diseases. Nonetheless, curcumin is considered safe, although potential toxic effects stemming from high dosages, long-term intake, and pharmacological interactions with other compounds have yet to be assessed. This Special Issue examines in detail and updates current research on the molecular targets, protective effects, and modes of action of natural plant-derived compounds and their roles in the prevention and treatment of human diseases.

Keywords

brain ischemia --- curcumin --- Alzheimer’s disease --- neurodegeneration --- amyloid --- tau protein --- autophagy --- mitophagy --- apoptosis --- genes --- glioblastoma multiforme --- autophagy --- mitophagy --- curcumin --- chaperone-mediated autophagy --- Akt/mTOR signaling --- transmission electron microscopy --- Curcuma longa --- turmeric tuber --- Zingiberaceae --- TLC bioautography --- antimicrobial agents --- ImageJ --- TLC-MS --- hydrostatic counter-current chromatography --- centrifugal partition chromatography --- curcumin --- death receptor --- apoptosis --- curcumin --- anticancer --- structure activity relationship --- cellular pathway --- mechanism of action --- delivery system --- wound --- wound healing --- diet --- nutrition --- micronutrients --- macronutrients --- curcumin --- amino-acids --- vitamins --- minerals --- curcumin --- oxidative metabolites --- inflamm-aging --- cancer --- metabolic reprogramming --- direct protein binding --- IL-17 --- STAT3 --- SHMT2 --- ageing --- anti-cancer --- autophagy --- microbiota --- senescence --- senolytics --- curcumin --- transthyretin --- amyloidosis --- protein aggregation --- protein misfolding --- drug discovery --- curcumin --- renal cell cancer --- tumor growth --- tumor proliferation --- cell cycling --- curcumin --- reflux esophagitis --- gastroprotection --- gastric ulcer --- Helicobacter pylori --- gastric cancer --- curcumin --- complementary medicine --- cancer treatment --- supportive care --- antioxidants --- anti-inflamation --- ulcerative colitis --- Crohn’s disease --- necrotizing enterocolitis --- curcumin --- inflammatory bowel disease --- curcumin --- silica --- chitosan --- nanoparticles --- anti-tumor --- antioxidant activity --- n/a

Regulatory microRNA

Authors: ---
ISBN: 9783038977681 9783038977698 Year: Pages: 348 DOI: 10.3390/books978-3-03897-769-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book includes updated information about microRNA regulation, for example, in the fields of circular RNAs, multiomics analysis, biomarkers and oncogenes. The variety of topics included in this book reaffirms the extent to which microRNA regulation affects biological processes. Although microRNAs are not translated to proteins, their importance for biological processes is not less than proteins. An understanding of their roles in various biological processes is critical to understanding gene function in these biological processes. Although non-coding RNAs other than microRNAs have recently come under investigation, microRNA still remains the front runner as the subject of genetic and biological studies. In reading the collection of papers, readers can grasp the most updated information regarding microRNA regulation, which will continue to be an important topic in genetics and biology.

Keywords

tensor decomposition --- miRNA transfection --- sequence-nonspecific off-target regulation --- extracellular vesicles --- cancer --- therapeutics --- miRNA --- virus --- host --- Cross-Kingdom --- target prediction --- microRNAs --- autophagy --- mitophagy --- cardiac diseases --- biomarker --- calf --- Ileum --- miRNA-mRNA integration --- miRNA sequencing --- growth --- development --- microRNA --- myelodysplastic syndromes --- acute myeloid leukemia --- azacitidine --- 14q32 --- MEG3 --- autophagy regulator --- transcriptional factor --- non-coding RNA --- regulatory network --- RWR algorithm --- circular RNA --- circFGFR2 --- FGFR2 --- miR-133a-5p --- miR-29b-1-5p --- skeletal muscle --- proliferation --- differentiation --- breast cancer --- CAFs --- estrogens --- GPER --- miR-338-3p --- c-Fos --- Cyclin D1 --- amyotrophic lateral sclerosis (ALS) --- biomarker --- microRNA --- cerebrospinal fluid (CSF) --- muscle biopsy --- circulating miRNAs --- RNA interference --- small interfering RNA --- microRNA --- oncolytic virotherapy --- conditionally replicating adenovirus (CRAd) --- biomarker --- gene --- microRNA --- parkinson’s disease --- miRNA --- bioinformatic analysis --- ischemic stroke --- miRNA-gene target interaction --- network --- biomarker --- diagnosis --- prognosis --- microRNAs --- epigenetic biomarker --- sepsis --- inflammation --- Teleostei --- embryogenesis --- tissue-enriched miRNAs --- post-transcriptional gene regulation --- miRNA expression and regulation --- passenger miRNA --- biomarker --- vascular injury --- smooth muscle cells --- porcine vein graft and stent models --- bone angiogenesis --- osteogenesis --- angiogenic-osteogenic coupling --- microRNAs --- bone regeneration --- bone formation --- bone tissue-engineering --- angiomiRs --- osteomiRs --- hypoxamiRs --- circular RNA --- circHIPK3 --- microRNA --- miR-30a-3p --- skeletal muscle --- proliferation --- differentiation

Molecular Research of Endometrial Pathophysiology

Authors: ---
ISBN: 9783039214952 9783039214969 Year: Pages: 378 DOI: 10.3390/books978-3-03921-496-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The endometrium has been the subject of intense research in a variety of clinical settings, because of its importance in the reproductive process and its role in women’s health. In the past 15 years, significant efforts have been invested in defining the molecular phenotype of the receptive phase endometrium as well as of various endometrial pathologies. Although this has generated a wealth of information on the molecular landscape of human endometrium, there is a need to complement this information in light of the novel methodologies and innovative technical approaches. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms of endometrium and endometrium-related disorders. The progress made in the molecular actions of steroids, in the metabolism of steroids and intracrinology, in endometrial intracellular pathways, in stem cells biology, as well as in the molecular alterations underlying endometrium-related pathologies has been the focus of the reviews and papers included.

Keywords

RANK --- endometrium --- endometrial cancer --- prognosis --- immunohistochemistry --- gene expression --- endometriosis --- developmental pathway --- pathogenomics --- mesenchymal stem cells --- endometrial cancer --- mtDNA mutations --- deficit of complex I --- antioxidant response --- mitochondrial biogenesis --- mitochondrial dynamics --- mitophagy --- miRNA --- lncRNAs --- endometrial cancer --- endometriosis --- chronic endometritis --- cell contacts --- tight junction --- adherens junction --- gap junction --- endometrium --- implantation --- decidualization --- endometriosis --- endometrial cancer --- liquid biopsy --- uterine aspirate --- circulating tumour cells (CTCs) --- circulating tumour DNA (ctDNA) --- exosomes --- Vitamin D --- endometrium --- endometrial cancer --- endometrial cancer --- preclinical models --- translational research --- endometrial cancer --- type II endometrial carcinoma --- targeted therapy --- kinase inhibitor --- molecular marker --- protein kinase --- protein phosphatase --- PP2A --- PPP2R1A --- SMAP --- endometriosis --- infertility --- niche --- inflammation --- immunomodulation --- mesenchymal stem cell --- orthoxenograft --- uterine cancer --- avatar --- murine models --- personalized medicine --- targeted therapy --- preclinical studies --- translational research --- endometriosis --- TRP channels --- endometrial stromal cells --- eutopic and ectopic endometrium --- endometrial cell --- pathway --- proliferation --- decidualization --- migration --- angiogenesis --- regeneration --- breakdown --- implantation --- endometrial cancer --- orthotopic xenograft model --- estrogen dependent --- bioluminescence imaging --- contrast-enhanced CT scan --- endometrium --- adult stem cells --- endometrial regeneration --- stem cell markers --- endometriosis --- endometrial cancer --- decidualisation --- oestradiol --- aromatase --- testosterone --- dehydroepiandrosterone (DHEA) --- endometriosis --- endometrial cancer --- sulfatase --- endometriosis --- ectopic stroma --- microRNA --- small RNA sequencing --- EDN1 --- HOXA10 --- miR-139-5p --- miR-375 --- CTCF --- tumour suppressor gene --- haploinsufficiency --- zinc finger --- CRISPR/Cas9 --- cancer --- endometrial cancer --- gene editing --- phosphoinositide 3-kinase --- PIK3CA --- PIK3CB --- p110? --- p110? --- endometrial cancer --- LGR5 --- endometrium --- endometriosis --- menstrual cycle --- macrophages

Listing 1 - 5 of 5
Sort by
Narrow your search