Search results: Found 4

Listing 1 - 4 of 4
Sort by
Grand Celebration: 10th Anniversary of the Human Genome Project

ISBN: 9783038421245 9783038421702 Year: Volume: 1 Pages: 276 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-24 15:19:15
License:

Loading...
Export citation

Choose an application

Abstract

In 1990, scientists began working together on one of the largest biological research projects ever proposed. The project proposed to sequence the three billion nucleotides in the human genome. The Human Genome Project took 13 years and was completed in April 2003, at a cost of approximately three billion dollars. It was a major scientific achievement that forever changed the understanding of our own nature. The sequencing of the human genome was in many ways a triumph for technology as much as it was for science. From the Human Genome Project, powerful technologies have been developed (e.g., microarrays and next generation sequencing) and new branches of science have emerged (e.g., functional genomics and pharmacogenomics), paving new ways for advancing genomic research and medical applications of genomics in the 21st century. The investigations have provided new tests and drug targets, as well as insights into the basis of human development and diagnosis/treatment of cancer and several mysterious humans diseases. This genomic revolution is prompting a new era in medicine, which brings both challenges and opportunities. Parallel to the promising advances over the last decade, the study of the human genome has also revealed how complicated human biology is, and how much remains to be understood. The legacy of the understanding of our genome has just begun. To celebrate the 10th anniversary of the essential completion of the Human Genome Project, in April 2013 Genes launched this Special Issue, which highlights the recent scientific breakthroughs in human genomics, with a collection of papers written by authors who are leading experts in the field.

Grand Celebration: 10th Anniversary of the Human Genome Project

ISBN: 9783038421252 9783038421719 Year: Volume: 2 Pages: 268
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-24 15:21:05
License:

Loading...
Export citation

Choose an application

Abstract

In 1990, scientists began working together on one of the largest biological research projects ever proposed. The project proposed to sequence the three billion nucleotides in the human genome. The Human Genome Project took 13 years and was completed in April 2003, at a cost of approximately three billion dollars. It was a major scientific achievement that forever changed the understanding of our own nature. The sequencing of the human genome was in many ways a triumph for technology as much as it was for science. From the Human Genome Project, powerful technologies have been developed (e.g., microarrays and next generation sequencing) and new branches of science have emerged (e.g., functional genomics and pharmacogenomics), paving new ways for advancing genomic research and medical applications of genomics in the 21st century. The investigations have provided new tests and drug targets, as well as insights into the basis of human development and diagnosis/treatment of cancer and several mysterious humans diseases. This genomic revolution is prompting a new era in medicine, which brings both challenges and opportunities. Parallel to the promising advances over the last decade, the study of the human genome has also revealed how complicated human biology is, and how much remains to be understood. The legacy of the understanding of our genome has just begun. To celebrate the 10th anniversary of the essential completion of the Human Genome Project, in April 2013 Genes launched this Special Issue, which highlights the recent scientific breakthroughs in human genomics, with a collection of papers written by authors who are leading experts in the field.

Grand Celebration: 10th Anniversary of the Human Genome Project

ISBN: 9783038421269 9783038421726 Year: Volume: 3 Pages: 274 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-24 15:22:31
License:

Loading...
Export citation

Choose an application

Abstract

In 1990, scientists began working together on one of the largest biological research projects ever proposed. The project proposed to sequence the three billion nucleotides in the human genome. The Human Genome Project took 13 years and was completed in April 2003, at a cost of approximately three billion dollars. It was a major scientific achievement that forever changed the understanding of our own nature. The sequencing of the human genome was in many ways a triumph for technology as much as it was for science. From the Human Genome Project, powerful technologies have been developed (e.g., microarrays and next generation sequencing) and new branches of science have emerged (e.g., functional genomics and pharmacogenomics), paving new ways for advancing genomic research and medical applications of genomics in the 21st century. The investigations have provided new tests and drug targets, as well as insights into the basis of human development and diagnosis/treatment of cancer and several mysterious humans diseases. This genomic revolution is prompting a new era in medicine, which brings both challenges and opportunities. Parallel to the promising advances over the last decade, the study of the human genome has also revealed how complicated human biology is, and how much remains to be understood. The legacy of the understanding of our genome has just begun. To celebrate the 10th anniversary of the essential completion of the Human Genome Project, in April 2013 Genes launched this Special Issue, which highlights the recent scientific breakthroughs in human genomics, with a collection of papers written by authors who are leading experts in the field.

Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses

Authors: --- --- --- --- et al.
ISBN: 9783039219605 / 9783039219612 Year: Pages: 558 DOI: 10.3390/books978-3-03921-961-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Botany
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

proteomic --- postharvest freshness --- ATP synthase --- ATP synthase CF1 alpha subunit (chloroplast) --- chlorophyll fluorescence parameters --- photosynthetic parameters --- drought stress --- Triticum aestivum L. --- comparative proteomic analysis --- iTRAQ --- VIGS --- Jatropha curcas --- phosphoproteomics --- seedling --- chilling stress --- regulated mechanism --- Alternanthera philoxeroides --- proteomic --- stem --- potassium --- stress --- Salinity stress --- Dunaliella salina --- isobaric tags for relative and absolute quantitation --- differentially abundant proteins --- proteomics --- arbuscular mycorrhizal fungi --- salt stress --- E. angustifolia --- proteomics --- wheat --- root --- wood vinegar --- drought stress --- ROS --- ABA --- proteome --- maize --- AGPase --- phosphorylation --- brittle-2 --- phos-tagTM --- MIPS --- exon-intron structure diversity --- Gossypium hirsutum --- loss-of-function mutant --- root cell elongation --- CHA-SQ-1 --- cytomorphology --- pollen abortion --- proteomics --- wheat --- cotton --- somatic embryogenesis --- transdifferentiation --- quantitative proteomics --- regulation and metabolism --- molecular basis --- concerted network --- maize --- phosphoproteomics --- salt tolerance --- label-free quantification --- root and shoot --- sugar beet --- salt stress --- S-adenosylmethionine decarboxylase --- ROS --- antioxidant enzyme --- cotton --- somatic embryogenesis --- transdifferentiation --- widely targeted metabolomics --- purine metabolism --- flavonoid biosynthesis --- molecular and biochemical basis --- transcript-metabolite network --- leaf sheath --- maturation --- transcriptional dynamics --- transcriptome --- abiotic stress --- silicate limitation --- diatom --- iTRAQ --- proteomics --- photosynthesis --- carbon fixation --- natural rubber biosynthesis --- mass spectrometry --- rubber grass --- rubber latex --- shotgun proteomics --- Taraxacum kok-saghyz --- two-dimensional gel electrophoresis --- visual proteome map --- proteomics --- wheat --- drought --- leaf --- iTRAQ --- micro-exons --- constitutive splicing --- alternative splicing --- ancient genes --- domain --- radish --- heat stress --- transcriptome sequencing --- lncRNA --- miRNA --- physiological response --- Millettia pinnata --- woody oilseed plants --- seed development --- miRNA --- nitrogen fertilizer --- rice --- proteome --- cultivars --- nitrogen use efficiency (NUE) --- Nelumbo nucifera --- phylogeny --- genomics --- molecular mechanisms --- model plant --- proteomes --- iTRAQ --- filling kernel --- drought stress --- heat shock proteins --- Zea mays L. --- wucai --- low-temperature stress --- high-temperature stress --- proteomics --- redox homeostasis --- GLU1 --- glutathione --- heat response --- heat-sensitive spinach variety --- proteomics --- ROS scavenging --- inositol --- phosphatidylinositol --- phosphatase --- stress --- signaling pathway --- integrated omics --- plants under stress --- post-genomics era --- proteome atlas --- quantitative proteomics

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by (3)

CC by-nc-nd (1)


Language

english (2)

eng (1)


Year
From To Submit

2020 (1)

2016 (3)