Search results: Found 6

Listing 1 - 6 of 6
Sort by
Fahrplanbasiertes Energiemanagement in Smart Grids

Author:
ISBN: 9783731505518 Year: Pages: XII, 204 p. DOI: 10.5445/KSP/1000056497 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

The increase in decentralized, volatile electricity generation as result of the German energy system transformation causes congestions in electricity grids. IT networking and coordination of producers and consumers in smart grids promises a solution to these problems. In this context, this work presents an energy management approach that approximates specified, aggregated power profiles. The approach uses power forecasts and flexibilities and takes network restrictions into account.

Modelling and Analysis of Sustainability Related Issues in New Era

Author:
ISBN: 9783039210244 / 9783039210251 Year: Pages: 350 DOI: 10.3390/books978-3-03921-025-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Economics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The purpose of this Special Issue is to investigate topics related to sustainability issues in the new era, especially in Industry 4.0 or other new manufacturing environments. Under Industry 4.0, there have been great changes with respect to production processes, production planning and control, quality assurance, internal control, cost determination, and other management issues. Moreover, it is expected that Industry 4.0 can create positive sustainability impacts along the whole value chain. There are three pillars of sustainability, including environmental sustainability, economic sustainability, and social sustainability. This Special Issue collects 15 sustainability-related papers from various industries that use various methods or models, such as mathematical programming, activity-based costing (ABC), material flow cost accounting, fuel consumption model, artificial intelligence (AI)-based fusion model, multi-attribute decision model (MADM), and so on. These papers are related to carbon emissions, carbon tax, Industry 4.0, economic sustainability, corporate social responsibility (CSR), etc. The research objects come from China, Taiwan, Thailand, Oman, Cyprus, Germany, Austria, and Portugal. Although the research presented in this Special Issue is not exhaustive, this Special Issue provides abundant, significant research related to environmental, economic, and social sustainability. Nevertheless, there still are many research topics that require our attention to solve problems of sustainability.

Keywords

carbon tax policy --- return policy --- carbon reduction --- e-commerce platform --- carbon emissions --- cap & trade --- green production --- footwear industry --- activity-based costing (ABC) --- activity-based costing (ABC) --- industry 4.0 --- integrated mathematical programming --- product-mix decision --- theory of constraints (TOC) --- carbon tax --- small and medium enterprises --- OEE --- OECD --- manufacturing sustainability --- time study --- Industry 4.0 --- material handling systems --- agent-based control architecture --- Activity-Based Costing (ABC) --- Industry 4.0 --- tire industry --- carbon emission --- carbon tax --- mathematical programming --- sustainability --- sustainability performance --- corporate social responsibility (CSR) --- internal control --- multi-attribute decision model (MADM) --- decision making trial and evaluation laboratory (DEMATEL) --- DANP (DEMATEL based ANP) --- VIKOR --- fuel consumption --- sustainability --- active suspension --- PID controller --- white noise --- colored noise --- long- and short-term --- greenhouse gas --- LS-ARIMAXi-ECM model --- sustainability --- economic growth --- exogenous variables --- CO2 emissions --- family business --- succession plan --- corporate characteristics --- family capital --- niche inheritance --- multi-attribute decision model (MADM) --- social sustainability --- artificial intelligence --- corporate social responsibility --- decision making --- firm value --- Activity-Based Costing (ABC) --- Industry 4.0 --- aluminum-alloy wheel industry --- mathematical programming --- Activity-Based Standard Costing (ABSC) --- Manufacturing Execution System (MES) --- Activity-Based Costing (ABC) --- Enterprise Resource Planning (ERP) --- Industry 4.0 --- industrial internet of things --- digital transformation --- digital platforms --- qualitative-empirical study --- small and medium-sized enterprises --- sustainable development --- energy efficiency --- electrical appliances --- life cycle cost analysis (LCCA) --- multi-attribute value theory (MAVT) --- multi-objective optimization --- NSGAII --- sustainability --- ISO14051 --- material flow cost accounting --- n/a

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Adaptive Catchment Management and Reservoir Operation

Authors: --- ---
ISBN: 9783038977384 / 9783038977391 Year: Pages: 498 DOI: 10.3390/books978-3-03897-739-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.

Keywords

Siemianówka --- hydrology --- Narew River --- dam --- reservoir --- discharge --- flow regime --- reservoir flushing --- numerical simulation --- flushing efficiency --- Kurobe River --- two-dimensional bed evolution model --- sediment flushing of empty storage --- shaft spillway pipe --- sediment flushing efficiency --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- Jingjiang River Reach --- Yangtze River --- CO2 --- reservoirs --- general regression neural network --- back propagation neural network --- climate change --- CMIP3 --- CMIP5 --- downscaling --- runoff response --- SWAT model --- stochastic linear programming --- Markov chain --- reliability --- vulnerability --- reservoir operation --- stochastic dynamic programming --- protection zone --- nutrient uptake --- NPP --- South-to-North Water Transfer Project --- Miyun Reservoir --- reservoir operation --- optimization --- SWAT --- HEC-ResPRM --- climate change --- CORDEX-Africa --- Tekeze basin --- long distance water diversion --- inverted siphon --- sensitivity analysis --- integrated supply system modeling --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- the Jingjiang River Reach --- the Yangtze River --- reservoir operation --- multi-stage stochastic optimization --- TB-MPC --- flood control --- real-time control --- energy --- hydropower stations --- differential evolution algorithm --- optimal scheduling --- ?-constrained method --- drinking water resources --- water environmental capacity (WEC) --- Environmental Fluid Dynamics Code (EFDC) model --- the Huangshi Reservoir --- seasonal rainfall --- upper Chao Phraya River Basin --- El Niño/Southern Oscillation --- Indian Monsoon --- sea surface temperatures --- reverse regulation --- coupling model --- aftereffect --- accompanying progressive optimality algorithm --- Dokan Dam --- runoff --- sediment load --- SWAT --- natural flow regime --- multi-objective model --- uncertainty --- genetic algorithm --- land and water resources --- system dynamics --- modeling --- scenario analysis --- Heilongjiang --- tropical reservoir --- heating impact --- Langcang-Mekong River --- Kappa distribution --- parameter relation --- partial gauged basin --- power function --- ratio curve --- ungauged basin --- reservoir operation --- integrated surface water-groundwater model --- Heihe River Basin --- environmental flow --- irrigation --- design and operation of the multipurpose reservoir --- water deficit --- reservoir simulation model --- climate change --- multi-objective optimization NSGA II --- resilience and robustness --- costs and benefits --- water energy --- multi-agent of river basin --- game theory --- water resources allocation --- optimal flood control operation --- cascade reservoirs --- dynamic programming with progressive optimality algorithm (DP-POA) --- the upper Yangtze River Basin --- parameterization --- simulation --- optimization --- direct policy search --- hedging policy --- shortage ratio: Vulnerability --- NSGA-II --- lentic habitats --- bitterling --- mussel --- floodplain vertical shape index --- sediment management --- adaptive management --- catchment modelling --- integrated management --- reservoir operation

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 / 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 / 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search